Advertisements
Advertisements
प्रश्न
Find the mean of each of the following frequency distributions
Class interval | 50 - 70 | 70 - 90 | 90 - 110 | 110 - 130 | 130 - 150 | 150 - 170 |
Frequency | 18 | 12 | 13 | 27 | 8 | 22 |
उत्तर
Let the a assumed mean be 100
Class interval | Mid-value (x1) | d1 = x1 - 100 | `"u"_1 = (x_1 - 100)/20` | f1 | f1u1 |
50 - 70 | 60 | -40 | -2 | 18 | -36 |
70 - 90 | 80 | -20 | -1 | 12 | -12 |
90 - 110 | 100 | 0 | 0 | 13 | 0 |
110 - 130 | 120 | 20 | 1 | 27 | 27 |
130 - 150 | 140 | 40 | 2 | 8 | 16 |
150 - 170 | 160 | 60 | 3 | 22 | 66 |
N = 100 | `sumf_1"u"_1=61` |
A = 100, h = 20
Mean `A+hxx(sumf_1"u"_1)/N`
`=100+20xx61/100`
`=100+1220/100`
= 100 + 12.20
= 112.20
APPEARS IN
संबंधित प्रश्न
The measurements (in mm) of the diameters of the head of the screws are given below:
Diameter (in mm) | No. of Screws |
33 — 35 | 10 |
36 — 38 | 19 |
39 — 41 | 23 |
42 — 44 | 21 |
45 — 47 | 27 |
Calculate mean diameter of head of a screw by ‘Assumed Mean Method’.
Find the mean using direct method:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequency | 7 | 5 | 6 | 12 | 8 | 2 |
In an annual examination, marks (out of 90) obtained by students of Class X in mathematics are given below:
Marks Obtained |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
Number of students |
2 | 4 | 5 | 20 | 9 | 10 |
Find the mean marks.
If the mean of frequency distribution is 8.1 and Σfixi = 132 + 5k, Σfi = 20, then k =?
If the mean of observation \[x_1 , x_2 , . . . . , x_n is x\] then the mean of x1 + a, x2 + a, ....., xn + a is
The median from the table is?
Value | Frequency |
7 | 2 |
8 | 1 |
9 | 4 |
10 | 5 |
11 | 6 |
12 | 1 |
13 | 3 |
In calculating the mean of grouped data, grouped in classes of equal width, we may use the formula `barx = a + (sumf_i d_i)/(sumf_i)` where a is the assumed mean. a must be one of the mid-points of the classes. Is the last statement correct? Justify your answer.
An aircraft has 120 passenger seats. The number of seats occupied during 100 flights is given in the following table:
Number of seats | 100 – 104 | 104 – 108 | 108 – 112 | 112 – 116 | 116 – 120 |
Frequency | 15 | 20 | 32 | 18 | 15 |
The following table gives the distribution of the life time of 400 neon lamps:
Life time (in hours) | Number of lamps |
1500 – 2000 | 14 |
2000 – 2500 | 56 |
2500 – 3000 | 60 |
3000 – 3500 | 86 |
3500 – 4000 | 74 |
4000 – 4500 | 62 |
4500 – 5000 | 48 |
Find the average life time of a lamp.
Using step-deviation method, find mean for the following frequency distribution:
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
Frequency | 3 | 4 | 7 | 6 | 8 | 2 |