Advertisements
Advertisements
प्रश्न
Find Quantity Index Number using Simple Aggregate method
Commodity | A | B | C | D | E |
Base year Quantity | 170 | 150 | 100 | 195 | 205 |
Current year Quantity | 90 | 70 | 75 | 150 | 95 |
उत्तर
Commodity | Base year quantity (q0) | Current year quantity (q1) |
A | 170 | 190 |
B | 150 | 70 |
C | 100 | 75 |
D | 195 | 150 |
E | 205 | 95 |
Total | 820 | 480 |
From the table `sum"q"_0` = 820, `sum"q"_1` = 480
Quantity Index Number (Q01) = `(sum"q"_1)/(sum"q"_0) xx 100`
= `480/820 xx 100`
= 58.54
APPEARS IN
संबंधित प्रश्न
Choose the correct alternative :
Value Index Number by Weighted Aggregate Method is given by
Fill in the blank :
Price Index Number by Weighted Aggregate Method is given by _______.
Solve the following problem :
Find the Value Index Number using Simple Aggregate Method.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 20 | 42 | 22 | 45 |
II | 35 | 60 | 40 | 58 |
III | 50 | 22 | 55 | 24 |
IV | 60 | 56 | 70 | 62 |
V | 25 | 40 | 30 | 41 |
State whether the following statement is True or False:
`sum("q"_1)/("q"_0) xx 100` is the Quantity Index Number by Simple Aggregate Method
State whether the following statement is True or False:
`sum ("P"_1"q"_1)/("p"_0"q"_0) xx 100` is the Value Index Number by Simple Aggregate Method
Calculate Value Index Number for the following using Simple Aggregate Method
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 30 | 13 | 40 | 15 |
B | 40 | 15 | 70 | 20 |
C | 10 | 12 | 60 | 22 |
D | 50 | 10 | 90 | 18 |
E | 20 | 14 | 100 | 16 |
Calculate Quantity Index Number using Simple Aggregate method
Commodity | I | II | III | IV | V |
Base year Quantity | 140 | 120 | 100 | 200 | 225 |
Current year Quantity | 100 | 80 | 70 | 150 | 185 |
Find Price Index Number using Simple Aggregate method by taking 2000 as base year
Commodity | Price (in ₹) for year 2000 |
Price (in ₹) for year 2007 |
Watch | 900 | 1,475 |
Shoes | 1,760 | 2,300 |
Sunglasses | 60 | 1,040 |
Mobile | 4,500 | 8,500 |
Find x if the Price Index Number by Simple Aggregate Method is 125
Commodity | P | Q | R | S | T |
Base Year Price (in ₹) | 10 | 8 | 12 | 24 | 18 |
Current Year Price (in ₹) | 14 | 10 | x | 28 | 22 |
Find values x and y if the Price Index Number by Simple Aggregate Method by taking 2001 as base year is 120, given `sum"p"_1` = 300.
Commodity | A | B | C | D |
Price (in ₹) in 2001 | 90 | x | 90 | 30 |
Price (in ₹) in 2004 | 95 | 60 | y | 35 |
Find x from following data if the Value Index Number is 200.
Commodity | Base Year | Current Year | ||
Prive | Quantity | Price | Quantity | |
A | 10 | 10 | 20 | 10 |
B | 8 | 20 | 22 | 15 |
C | 2 | x | 8 | 10 |
D | 9 | 10 | 16 | 10 |
E | 5 | 6 | 3 | 10 |
Choose the correct pair:
Group A | Group B |
A. Price Index | (a) `(sump_1q_1)/(sump_0q_0) xx 100` |
B. Value Index | (b) `(sumq_1)/(sumq_0) xx 100` |
C. Quantity Index | (c) `(sump_1q_1)/(sump_0q_1) xx 100` |
D. Paasche's Index | (d) `(sump_1)/(sump_0) xx 100` |
The Price Index Number for year 2004, with respect to year 2000 as base year. is known to be 130. Find the missing numbers in the following table if ∑p0 = 320
Commodity | A | B | C | D | E | F |
Price (in ₹) in 2000 | 40 | 50 | 30 | x | 60 | 100 |
Price (in ₹) in 2000 | 50 | 70 | 30 | 85 | y | 115 |
Calculate the price index number for the given data.
Commodity | A | B |
Price in 2020 (₹) | 20 | 30 |
Price in 2021 (₹) | 40 | 40 |
State with reason whether you agree or disagree with the following statement:
The quantity index number is one type of index number.
Identify and explain the concept from the given illustration:
Mihir prepared the share price index number.
Explain the meaning of the Price Index Number.
Choose the correct pair :
Group A | Group B | ||
1) | Price Index | a) | `(sump_1q_1)/(sump_0q_0) xx 100` |
2) | Value Index | b) | `(sumq_1)/(sumq_0) xx 100` |
3) | Quantity Index | c) | `(sump_1q_1)/(sump_0q_1) xx 100` |
4) | Paasche's Index | d) | `(sump_1)/(sump_0) xx 100` |
Choose the correct pair:
Group A | Group B | ||
1) | Price Index | a) | `(sum"p"_1"q"_1)/(sum"p"_0"q"_0)xx100` |
2) | Value Index | b) | `(sum"q"_1)/(sumq"_0)xx100` |
3) | Quantity Index | c) | `(sum"p"_1"q"_1)/(sum"p"_0"q"_1)xx100` |
4) | Paasche's Index | d) | `(sum"p"_1)/(sum"p"_0")xx100` |