हिंदी

Find the Sum of the Following Arithmetic Progressions: 3, 9/2, 6, 15/2, ... to 25 Terms - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following arithmetic progressions:

3, 9/2, 6, 15/2, ... to 25 terms

उत्तर

In the given problem, we need to find the sum of terms for different arithmetic progressions. So, here we use the following formula for the sum of n terms of an A.P.,

`S_n = n/2[2a + (n -1)d]`

Where; a = first term for the given A.P

d = common difference of the given A.P.

= number of terms

3, 9/2, 6, 15/2, ... to 25 terms

Common difference of the A.P. (d)  = `a_2 - a_1`

`= 9/2 - 3`

`= (9 - 6)/2`

`= 3/2`

Number of terms (n) = 25

The first term for the given A.P. (a) = 3

So, using the formula we get,

`S_25 = 25/2 [2(3) +(25 - 1)(3/2)]`

`= (25/2)[6 + (25)(3/2)]`

`= (25/2)[6 + (72/2)]`

`= (25/2) [42]`

= 525

On further simplifying we get

`S_25 = 252`

Therefore the sum of first 25 term for the given A.P. is 525

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Arithmetic Progression - Exercise 5.6 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 5 Arithmetic Progression
Exercise 5.6 | Q 1.3 | पृष्ठ ३०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×