हिंदी

Find the coordinates of the point which is located three units behind the YZ-plane, four units to the right of XZ-plane and five units above the XY-plane. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the coordinates of the point which is located three units behind the YZ-plane, four units to the right of XZ-plane, and five units above the XY-plane.

योग

उत्तर

Three units behind the YZ-plane i.e., x = – 3

Four units to the right of the XZ-plane i.e., y = 4

Five units above the XY-plane i.e., z = 5

∴ The required co-ordinates are (– 3, 4, 5).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.5: Vectors and Three Dimensional Geometry - Very Short Answers

APPEARS IN

संबंधित प्रश्न

If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors such that \[x \vec{a} + y \vec{b} = \vec{0} ,\] then write the values of x and y.


If \[\overrightarrow{a}\] is a non-zero vector of modulus a and m is a non-zero scalar such that m \[\overrightarrow{a}\] is a unit vector, write the value of m.


Write a unit vector in the direction of \[\overrightarrow{b} = 2 \hat{i} + \hat{j} + 2 \hat{k}\].


Forces 3 O \[\vec{A}\], 5 O \[\vec{B}\] act along OA and OB. If their resultant passes through C on AB, then 


The vector equation of the plane passing through \[\vec{a} , \vec{b} , \vec{c} ,\text{ is }\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} ,\] provided that

 


Find the components along the coordinate axes of the position vector of the following point :

Q(–5, 1)


In Figure, which of the following is not true?


The vector `bar"a"` is directed due north and `|bar"a"|` = 24. The vector `bar"b"` is directed due west and `|bar"b"| = 7`. Find `|bar"a" + bar"b"|`.


In the triangle PQR, `bar"PQ" = bar"2a", bar"QR" = bar"2b"`. The midpoint of PR is M. Find the following vectors in terms of `bar"a"` and `bar"b"`:

(i) `bar"PR"` (ii) `bar"PM"` (iii) `bar"QM"`.


ABCDEF is a regular hexagon. Show that `bar"AB" + bar"AC" + bar"AD" + bar"AE" + bar"AF" = 6bar"AO"`, where O is the centre of the hexagon.


In the given figure express `bar"c"` and `bar"d"` in terms of `bar"a"` and `bar"b"`.


Find a vector in the direction of `bara = hati - 2hatj` that has magnitude 7 units.


Find the area of the traingle with vertices (1, 1, 0), (1, 0, 1) and (0, 1, 1).


Express `- hat"i" - 3hat"j" + 4hat"k"` as the linear combination of the vectors `2hat"i" + hat"j" - 4hat"k", 2hat"i" - hat"j" + 3hat"k"` and `3hat"i" + hat"j" - 2hat"k"`


Select the correct option from the given alternatives:

If `bar"a"  "and"  bar"b"` are unit vectors, then what is the angle between `bar"a"` and `bar"b"` for `sqrt3bar"a" - bar"b"` to be a unit vector?


Select the correct option from the given alternatives:

If `bar"a", bar"b", bar"c"` are non-coplanar unit vectors such that `bar"a"xx (bar"b"xxbar"c") = (bar"b"+bar"c")/sqrt2`, then the angle between `bar"a"  "and"  bar"b"` is 


Express the vector `bar"a" = 5hat"i" - 2hat"j" + 5hat"k"` as a sum of two vectors such that one is parallel to the vector `bar"b" = 3hat"i" + hat"k"` and other is perpendicular to `bar"b"`.


Find the acute angle between the curves at their points of intersection, y = x2, y = x3.


Show that no line in space can make angles `pi/6` and `pi/4` with X-axis and Y-axis.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a". bar"b" + bar"c"`


a and b are non-collinear vectors. If p = (2x + 1) a - band q = (x - 2)a +b are collinear vectors, then x = ______.


a and b are non-collinear vectors. If c = (x - 2)a + b and d = (2x + 1)a - b are collinear vectors, then the value of x = ______.


If the vectors `overlinea = 2hati - qhatj + 3hatk` and `overlineb = 4hati - 5hatj + 6hatk` are collinear, then the value of q is ______


lf `overlinea`, `overlineb` and `overlinec` are unit vectors such that `overlinea + overlineb + overlinec = overline0` and angle between `overlinea` and `overlineb` is `pi/3`, then `|overlinea xx overlineb| + |overlineb xx overlinec| + |overlinec xx overlinea|` = ______ 


The 2 vectors `hat"j" + hat"k"` and `3hat"i" - hat"j" + 4hat"k"` represents the two sides AB and AC, respectively of a ∆ABC. The length of the median through A is ______.


The unit vector perpendicular to the vectors `hat"i" - hat"j"` and `hat"i" + hat"j"` forming a right handed system is ______.


If `vec"a", vec"b", vec"c"` are unit vectors such that `vec"a" + vec"b" + vec"c"` = 0, then the value of `vec"a" * vec"b" + vec"b" * vec"c" + vec"c" * vec"a"` is ______.


If `vec"a"` is any non-zero vector, then `(vec"a" .hat"i")hat"i" + (vec"a".hat"j")hat"j" + (vec"a".hat"k")hat"k"` equals ______.


Classify the following as scalar and vector quantity.

Force


Four vectors `veca, vecb, vecc` and `vecx` satisfy the relation `(veca.vecx)vecb = vecc + vecx` where `vecb * veca` ≠ 1. The value of `vecx` in terms of `veca, vecb` and `vecc` is equal to


For given vectors, `veca = 2hati - hatj + 2hatk` and `vecb = - hati + hatj - hatk` find the unit vector in the direction of the vector `veca + vecb`.


Find `|vecx|`, if for a unit vector `veca, (vecx - veca) * (vecx + veca)` = 12


In the triangle PQR, `bar("P""Q")`= `2 bar"a"` and `bar ("QR")` = `2 barb`.The mid - point of PR is M. Find following vector in term of  `bar a ` and `barb.`

  1. `bar("P""R")` 
  2. `bar("P""M")`
  3. `bar("Q""M")`

In the triangle PQR, `bar(PQ) = 2bara` and `bar(QR)=2barb`. The mid-point of PR is M. Find following vectors in terms of `bar a and bar b `.

  1. `bar("PR")`
  2. `bar("PM")`
  3. `bar("QM")`

Check whether the vectors `2hati + 2hatj + 3hatk, - 3hati + 3hatj +2 hatk and 3hati + 4hatk` from a triangle or not.


Check whether the vectors `2hati+2hatj+3hatk,-3hati+3hatj+2hatk` and `3hati+4hatk` form a triangle or not.


Check whether the vectors `2hati + 2hatj +3hatk, - 3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not. 


Consider the following statements and choose the correct option:

Statement 1: If `veca` and `vecb` represents two adjacent sides of a parallelogram then the diagonals are represented by `veca + vecb` and `veca - vecb`.

Statement 2: If `veca` and `vecb` represents two diagonals of a parallelogram then the adjacent sides are represented by `2(veca + vecb)` and `2(veca - vecb)`.

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×