हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा १२

Find the differential equation of all circles passing through the origin and having their centers on the y axis - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the differential equation of all circles passing through the origin and having their centers on the y axis

योग

उत्तर

Equation of circle whose centre is (h, k)

(x – h)2 + (y – k)2 = r2

Since the centre is on the y-axis (ie) (0, k) be the centre

(x – 0)2 + (y – k)2 = r2

x2 + (y – k)2 = r2  ........(1)

Since the circle passing the origin (0, 0)

Equation (1) becomes

0 + (0 – k)2 = r2

k2 = r2

⇒ r = k

Equation (1)

⇒ x2 + (y – k)2 = k²

x2 + y2 – 2yk + k2 = k2

x2 + y2 – 2yk = 0

x2 + y2 = 2yk  .......(2)

Differentiating w.r.t. x

`2x +  2y ("d"y)/("d"x) = 2"k" ("d"y)/("d"x)`

⇒ `x + y ("d"y)/("d"x) = "k" ("d"y)/("d"x)`

k = `(x + y ("d"y)/("d"x))/((("d"y)/("d"x))`  .........(3)

From (2) and (3)

`x^2 + y^2 = 2y ((x + y ("d"y)/("d"x))/((("d"y)/("d"x))))`

`(x^2 + y^2) ("d"y)/("d"x) = 2y(x y ("d"y)/("d"x))`

`x^2 ("d"y)/("d"x) + y^2 ("d"y)/("d"x) = 2xy + 2y^2 ("d"y)/("d"x)`

`x^2 ("d"y)/("d"x) - 2xy = 2y^2 ("d"y)/("d"x) - y^2 ("d"y)/("d"x)`

⇒ `y^2 ("d"y)/("d"x) = x^2 ("d"y)/("d"x) - 2xy`

÷ Each term by `(("d"y)/("d"x))`

⇒ `y^2 = x^2 - 2xy(("d"x)/("d"y))`

shaalaa.com
Formation of Ordinary Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Differential Equations - Exercise 4.1 [पृष्ठ ८५]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
अध्याय 4 Differential Equations
Exercise 4.1 | Q 6 | पृष्ठ ८५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×