Advertisements
Advertisements
प्रश्न
Find the direction cosines of the line `(2x - 1)/3 = 3y = (4z + 3)/2`
योग
उत्तर
`(2x - 1)/3 = 3y = (4z + 3)/2`
The equations can be written as
`(x - 1/2)/(3/2) = y/(1/3) = (z + 3/4)/(2/4)`
These equations are of the form
`(x - x_1)/a = (y - y_1)/b = (z - z_1)/c`
∴ Direction ratios of the line are
`3/2, 1/3, 1/2`
i.e. 9, 2, 3
∴ `sqrt((9)^2 + (2)^2 + (3)^2)`
= `sqrt(81 + 4 + 9)`
= `sqrt(94)`
∴ d.c.s. of the line are `9/sqrt(94), 2/sqrt(94), 3/sqrt(94)`
shaalaa.com
Vector and Cartesian Equations of a Line
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?