Advertisements
Advertisements
प्रश्न
Find the equation of the circle having (1, –2) as its centre and passing through 3x + y = 14, 2x + 5y = 18
योग
उत्तर
Given equations are 3x + y = 14 ......(i)
And 2x + 5y = 18 ......(ii)
From equation (i) we get y = 14 – 3x ......(iii)
Putting the value of y in equation (ii) we get
⇒ 2x + 5(14 – 3x) = 18
⇒ 2x + 70 – 15x = 18
⇒ – 13x = – 70 + 18
⇒ – 13x = – 52
∴ x = 4
From equation (iii) we get, y = 14 – 3 × 4 = 2
∴ Point of intersection is (4, 2)
Now, radius r = `sqrt((4 - 1)^2 + (2 + 2)^2)`
= `sqrt((3)^2 + (4)^2)`
= `sqrt(9 + 16)`
= 5
So, the equation of circle is (x – h)2 + (y – k)2 = r2
⇒ (x – 1)2 + (+ 2)2 = (5)2
⇒ x2 – 2x + 1 + y2 + 4y + 4 = 25
⇒ x2 + y2 – 2x + 4y – 20 = 0
Hence, the required equation is x2 + y2 – 2x + 4y – 20 = 0.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?