हिंदी

Find the equation of the circle passing through the points (2, 3) and (–1, 1) and whose centre is on the line x – 3y – 11 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the circle passing through the points (2, 3) and (–1, 1) and whose centre is on the line x – 3y – 11 = 0.

योग

उत्तर

Let the equation of the required circle be (x – h)2 + (y – k)2 = r2.

Since the circle passes through points (2, 3) and (–1, 1),

(2 – h)2 + (3 – k)2 = r2   …(1)

(–1 – h)2 + (1 – k)2 = r2   …(2)

Since the centre (h, k) of the circle lies on line x – 3y – 11 = 0,

h – 3k = 11    …(3)

From equations (1) and (2), we obtain

(2 – h)+ (3 – k)2 = (–1 – h)2 + (1 – k)2

⇒ 4 – 4h + h2 + 9 – 6k + k2 = 1 + 2h + h2 + 1 – 2k + k2

⇒ 4 – 4h + 9 – 6k = 1 + 2h + 1 – 2k

⇒ 6h + 4k = 11   …(4)

Solving equations (3) and (4) we obtain `"h" = 7/2` and `"k" = (-5)/2`.

Substituting the values ​​of h and k in equation (1), we obtain

`(2 - 7/2)^2 + (3 + 5/2)^2 = r^2`

= `((4 - 7)/2)^2 + ((6 + 5)/2)^2 = r^2`

= `((-3)/2)^2 + (11/2)^2 = r^2`

= `9/4 + 121/4 = r^2`

= `130/4 = r^2`

Thus, the equation of the required circle is

= `(x - 7/2)^2 + (y + 5/2)^2 = 130/4`

= `(2x - 7)^2/2 + (2y + 5)^2/2 = 130/4`

= 4x2 − 28x + 49 + 4y2 + 20y + 2 = 130

= 4x2 + 4y2 − 28x + 20y − 56 = 0

= 4(x2 + y2 − 7x + 5y − 14) = 0

= x2 + y2 − 7x + 5y − 14 = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise 11.1 [पृष्ठ २४१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise 11.1 | Q 11 | पृष्ठ २४१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×