हिंदी

Find the number of different ways of arranging letters in the word ARRANGE. How many of these arrangements the two R’s and two A’s are not together? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the number of different ways of arranging letters in the word ARRANGE. How many of these arrangements the two R’s and two A’s are not together?

योग

उत्तर

The word ARRANGE has 7 letters of which A and R are repeated 2 times.
∴ The number of ways of arranging letters of the word

= `(7!)/(2!2!)`

= `((7 xx 6 xx 5 xx 4 xx 3 xx 2)!)/(2!2!)`
= 1260
Here, we have to find the number of arrangements in which two R’s nor A’s are together.

A: set of words having 2A together
B: set of words having 2R together
Number of words having both A and both R not together
= 1260 − n(A ∪ B)
= 1260 − [n(a) + n(B) − n(A ∩ B)] .......(i)
n(A) = number of ways in which (AA) R, R, N, G, E are to be arranged
∴ n(A) = `(6!)/(2!)` = 360
n(B) = number of ways in which (RR), A, A, N, G, E are to be arranged
∴ n(B) = `(6!)/(2!)` = 360
n(A ∩ B) = number of ways in which (AA), (RR), N, G, E are to be arranged
∴ n(A ∩ B) = 5! = 120
Substituting n(A), n(B), n(A ∩ B) in (i), we get
Number of words having both A and both R not together
 = 1260 – [360 + 360 – 120]
= 1260 − 600
= 660

shaalaa.com
Permutations When All Objects Are Not Distinct
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Permutations and Combinations - Exercise 6.4 [पृष्ठ ८३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 6 Permutations and Combinations
Exercise 6.4 | Q 10 | पृष्ठ ८३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×