Advertisements
Advertisements
प्रश्न
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 8 green balls, and 7 blue balls so that 3 balls of every colour are drawn
उत्तर
9 balls are to be selected from 6 red, 8 green, 7 blue balls such that the selection consists of 3 balls of each colour.
∴ 3 red balls can be selected from 6 red balls in 6C3 ways.
3 green balls can be selected from 8 green balls in 8C3 ways.
3 blue balls can be selected from 7 blue balls in 7C3 ways.
∴ Number of ways selection can be done if the selection consists of 3 balls of each colour
= 6C3. 8C3. 7C3
= `(6!)/(3!3!) xx (8!)/(3!5!) xx (7!)/(3!4!)`
= `(6 xx 5 xx 4 xx 3!)/(3 xx 2 xx 1 xx 3!) xx (8 xx 7 xx 6 xx 5!)/(3 xx 2 xx 1 xx 5!) xx (7 xx 6 xx 5 xx 4!)/(3 xx 2 xx 1 xx 4!)`
= 20 × 56 × 35
= 39200
APPEARS IN
संबंधित प्रश्न
Find the value of `""^80"C"_2`
Find the value of `""^15"C"_4 + ""^15"C"_5`
Find n if `""^"n""C"_("n" - 3)` = 84
If `""^"n""C"_("r" - 1)` = 6435, `""^"n""C"_"r"` = 5005, `""^"n""C"_("r" + 1)` = 3003, find `""^"r""C"_5`.
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 10
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear.
Find the number of triangles formed by joining 12 points if no three points are collinear,
Find the number of triangles formed by joining 12 points if four points are collinear.
Find n, if `""^21"C"_(6"n") = ""^21"C"_(("n"^2 + 5)`
A group consists of 9 men and 6 women. A team of 6 is to be selected. How many of possible selections will have at least 3 women?
Five students are selected from 11. How many ways can these students be selected if two specified students are selected?
Find n if nCn–3 = 84
Find n and r if nCr–1 : nCr : nCr+1 = 20 : 35 : 42
Find the number of ways of selecting a team of 3 boys and 2 girls from 6 boys and 4 girls
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 10
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 15
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear
Find the number of triangles formed by joining 12 points if four points are collinear
Find the value of `sum_("r" = 1)^4 ""^((21 - "r"))"C"_4`
Find the differences between the greatest values in the following:
14Cr and 12Cr
In how many ways can a boy invite his 5 friends to a party so that at least three join the party?
A group consists of 9 men and 6 women. A team of 6 is to be selected. How many of possible selections will have at least 3 women?
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two question from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Five students are selected from 11. How many ways can these students be selected if two specified students are selected?
Select the correct answer from the given alternatives.
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently
Answer the following:
A student finds 7 books of his interest but can borrow only three books. He wants to borrow the Chemistry part-II book only if Chemistry Part-I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
A student passes an examination if he secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Answer the following:
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7 and 5
Answer the following:
There are 4 doctors and 8 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team
In how many ways can a group of 5 boys and 6 girls be formed out of 10 boys and 11 girls?
What is the probability of getting a “FULL HOUSE” in five cards drawn in a poker game from a standard pack of 52-cards?
[A FULL HOUSE consists of 3 cards of the same kind (eg, 3 Kings) and 2 cards of another kind (eg, 2 Aces)]
Out of 7 consonants and 4 vowels, the number of words (not necessarily meaningful) that can be made, each consisting of 3 consonants and 2 vowels, is ______.