हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Find the parametric form of vector equation and Cartesian equations of the straight line passing through the point (– 2, 3, 4) and parallel to the straight line x-1-4=y+35=8-z6 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the parametric form of vector equation and Cartesian equations of the straight line passing through the point (– 2, 3, 4) and parallel to the straight line `(x - 1)/(-4) = (y + 3)/5 = (8 - z)/6`

योग

उत्तर

`vec"a" = -2hat"i" + 3hat"j" + 4hat"k"  (x_1 y_1, z_1)` = (– 2, 3, 4)

`vec"b" = - 4hat"i" + 5hat"j" + 6hat"k"  (l, "m", "n")` = (– 4, 5, 6)

Vector equation

`vec"r" = vec"a" + "t"vec"b"`, t ∈ R 

`vec"r" = (-2hat"i" + 3hat"j" + 4hat"k") + "t"(-4hat"i" + 5hat"j" - 6hat"k")`, t ∈ R 

Cartessain equation

`(x - x_1)/1 = (y - y_1)/"m" = (z - z_1)/"n"`

`(x + 2)/(-4) = (y - 3)/5 = (z - 4)/(- 6)`

shaalaa.com
Application of Vectors to 3-dimensional Geometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Applications of Vector Algebra - Exercise 6.4 [पृष्ठ २४९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 6 Applications of Vector Algebra
Exercise 6.4 | Q 2 | पृष्ठ २४९

संबंधित प्रश्न

Find the non-parametric form of vector equation and Cartesian equations of the straight line passing through the point with position vector `4hat"i" + 3hat"j" - 7hat"k"` and parallel to the vector `2hat"i" - 6hat"j" + 7hat"k"`


Find the points where the straight line passes through (6, 7, 4) and (8, 4, 9) cuts the xz and yz planes


Find the direction cosines of the straight line passing through the points (5, 6, 7) and (7, 9, 13). Also, find the parametric form of vector equation and Cartesian equations of the straight line passing through two given points


Find the acute angle between the following lines.

`vec"r" = (4hat"i" - hat"j") + "t"(hat"i" + 2hat"j" - 2hat"k")`


Find the acute angle between the following lines.

`(x + 4)/3 = (y - 7)/4 = (z + 5)/5, vec"r" = 4hat"k" + "t"(2hat"i" + hat"j" + hat"k")`


Find the acute angle between the following lines.

2x = 3y = – z and 6x = – y = – 4z


f the straight line joining the points (2, 1, 4) and (a – 1, 4, – 1) is parallel to the line joining the points (0, 2, b – 1) and (5, 3, – 2) find the values of a and b


If the straight lines `(x - 5)/(5"m" + 2) = (2 - y)/5 = (1 - z)/(-1)` and x = `(2y + 1)/(4"m") = (1 - z)/(-3)` are perpendicular to ech other find the  value of m


Show that the points (2, 3, 4), (– 1, 4, 5) and (8, 1, 2) are collinear


Find the parametric form of vector equation and Cartesian equations of straight line passing through (5, 2, 8) and is perpendicular to the straight lines `vec"r" = (hat"i" + hat"j" - hat"k") + "s"(2hat"i" - 2hat"j" + hat"k")` and `vec"r" = (2hat"i" - hat"j" - 3hat"k") + "t"(hat"i" + 2hat"j" + 2hat"k")`


Show that the lines `(x - 3)/3 = (y - 3)/(-1), z - 1` = 0 and `(x - 6)/2 = (z - 1)/3, y - 2` = 0 intersect. Aslo find the point of intersection


Show that the straight lines x + 1 = 2y = – 12z and x = y + 2 = 6z – 6 are skew and hence find the shortest distance between them


Find the foot of the perpendicular drawn: from the point (5, 4, 2) to the line `(x + 1)/2 = (y - 3)/3 = (z - 1)/(-1)`. Also, find the equation of the perpendicular


Choose the correct alternative:

If `[vec"a", vec"b", vec"c"]` = 1, then the value of `(vec"a"*(vec"b" xx vec"c"))/((vec"c" xx vec"a")*vec"b") + (vec"b"*(vec"c" xx vec"a"))/((vec"a" xx vec"b")*vec"c") + (vec"c"*(vec"a" xx vec"b"))/((vec"c" xx vec"b")*vec"a")` is


Choose the correct alternative:

If `vec"a", vec"b", vec"c"` are non-coplanar, non-zero vectors `[vec"a", vec"b", vec"c"]` = 3, then `{[[vec"a" xx vec"b", vec"b" xx vec"c", vec"c" xx vec"a"]]}^2` is equal to


Choose the correct alternative:

The vector equation `vec"r" = (hat"i" - hat"j" - hat"k") + "t"(6hat"i" - hat"k")` represents a straight line passing through the points


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×