Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.
योग
उत्तर
`x^2 dy/dx + y^2 = xy dy/dx`
∴ `(xy - x^2) dy/dx = y^2`
∴ `dy/dx = y^2/(xy - x^2)`
This is homogeneous differential equation.
Put y = `vx -> dy/dx`
= `v + x (dv)/dx`
Given equation becomes
`v + x (dv)/(dx) = (v^2x^2)/(x^2v - x^2)`
= `v^2/(v - 1)`
∴ `x (dv)/(dx) = v^2/(v - 1) - v `
= `(v^2 - v^2 + v)/(v - 1)`
∴ `x (dv)/dx = v/(v - 1)`
∴ `((v - 1))/v dv = dx/x`
Integrating both sides
`int ((v - 1)/v)dv = int dx/x`
∴ `int (1 - 1/v)dv = int dx/x`
∴ v – log v = log x + c
Put v = `y/x`
∴ `y/x - log(y/x)` = log x + c
∴ `y/x - log y + log x` = log x + c
∴ `y/x - logy` = c
Put x = 1,
y = 1,
∴ c = 1
∴ y – x log y = x
shaalaa.com
Formation of Differential Equations
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?