Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation `(xe^(y/x) +y) dx = x dy,` given that y = 1 when x = 1.
योग
उत्तर
`(xe^(y/x) +y) dx = x dy`
given y = 1, x = 1
The given differential eqn is homogeneous function of degree zero.
To solve it we make substitution
y = vx, `dy/dx = v+x (dv)/dx` ...(i)
⇒ `dy/dx = (xe^(y/x)+y)/x`
⇒ `dy/dx = e^(y/x)+y/x`
from (i)
`v + x (dv)/dx = e^v + v`
⇒ `int (dv)/e^v = int dx/x`
−e-v = log x + C or
`-e^(y/x) = log |x| + C`
It is given that x = 1, y = 1
So −e−1 = log(1) + C
or C = −e−1
Hence required solution
`e^-1 -e^(-y/x) = log |x|`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?