हिंदी

Find the probability distribution of number of heads in four tosses of a coin - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the probability distribution of number of heads in four tosses of a coin

योग

उत्तर

Let X denote the number of heads.

Sample space of the experiment is

S = {HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTTH, TTHH, THTH, HTHT, THHT, HTTT, THTT, TTHT, TTTH, TTTT}

The values of X corresponding to these outcomes are as follows.

X(TTTT) = 0

X(HTTT) = X(THTT) = X(TTHT) = X(TTTH) = 1

X(HHTT) = X(HTTH) = X(TTHH) = X(THTH) = X(HTHT) = X(THHT) = 2

X(HHHT) = X(HHTH) = X(HTHH) = X(THHH) = 3

X(HHHH) = 4

∴ X is a discrete random variable that can take values 0, 1, 2, 3, 4.

The probability distribution of X is then obtained as follows:

X 0 1 2 3 4
P(X = x) `(1)/(16)` `(4)/(16)` `(6)/(16)` `(4)/(16)` `(1)/(16)`
shaalaa.com
Probability Distribution of Discrete Random Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.8: Probability Distributions - Q.4

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Probability Distributions
Exercise 8.1 | Q 4.(iii) | पृष्ठ १४१

संबंधित प्रश्न

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

0 -1 -2
P(X) 0.3 0.4 0.3

The following is the p.d.f. of r.v. X:

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find P (x < 1·5)


The following is the p.d.f. of r.v. X:

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

 P(x > 2)


If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______. 


Choose the correct option from the given alternative:

If the a d.r.v. X has the following probability distribution :

x -2 -1 0 1 2 3
p(X=x) 0.1 k 0.2 2k 0.3 k

then P (X = −1) =


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

*1

P (–1 ≤ X ≤ 2)


The probability distribution of discrete r.v. X is as follows :

x = x 1 2 3 4 5 6
P[x=x] k 2k 3k 4k 5k 6k

(i) Determine the value of k.

(ii) Find P(X≤4), P(2<X< 4), P(X≥3).


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

Calculate: P(x≤1)


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

Calculate: P(0.5 ≤ x ≤ 1.5)


Given that X ~ B(n,p), if n = 25, E(X) = 10, find p and Var (X).


State whether the following is True or False :

If P(X = x) = `"k"[(4),(x)]` for x = 0, 1, 2, 3, 4 , then F(5) = `(1)/(4)` when F(x) is c.d.f.


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Determine the value of k.


Solve the following problem :

The probability distribution of a discrete r.v. X is as follows.

X 1 2 3 4 5 6
(X = x) k 2k 3k 4k 5k 6k

Find P(X ≤ 4), P(2 < X < 4), P(X ≤ 3).


If X denotes the number on the uppermost face of cubic die when it is tossed, then E(X) is ______


If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for"  x = 1","  2","  3","  .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______


The probability distribution of X is as follows:

X 0 1 2 3 4
P(X = x) 0.1 k 2k 2k k

Find k and P[X < 2]


The probability distribution of a discrete r.v. X is as follows:

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k
  1. Determine the value of k.
  2. Find P(X ≤ 4)
  3. P(2 < X < 4)
  4. P(X ≥ 3)

Given below is the probability distribution of a discrete random variable x.

X 1 2 3 4 5 6
P(X = x) K 0 2K 5K K 3K

Find K and hence find P(2 ≤ x ≤ 3)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×