Advertisements
Advertisements
प्रश्न
Find the probability distribution of number of heads in four tosses of a coin
उत्तर
Let X denote the number of heads.
Sample space of the experiment is
S = {HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTTH, TTHH, THTH, HTHT, THHT, HTTT, THTT, TTHT, TTTH, TTTT}
The values of X corresponding to these outcomes are as follows.
X(TTTT) = 0
X(HTTT) = X(THTT) = X(TTHT) = X(TTTH) = 1
X(HHTT) = X(HTTH) = X(TTHH) = X(THTH) = X(HTHT) = X(THHT) = 2
X(HHHT) = X(HHTH) = X(HTHH) = X(THHH) = 3
X(HHHH) = 4
∴ X is a discrete random variable that can take values 0, 1, 2, 3, 4.
The probability distribution of X is then obtained as follows:
X | 0 | 1 | 2 | 3 | 4 |
P(X = x) | `(1)/(16)` | `(4)/(16)` | `(6)/(16)` | `(4)/(16)` | `(1)/(16)` |
APPEARS IN
संबंधित प्रश्न
State if the following is not the probability mass function of a random variable. Give reasons for your answer.
X | 0 | -1 | -2 |
P(X) | 0.3 | 0.4 | 0.3 |
The following is the p.d.f. of r.v. X:
f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
Find P (x < 1·5)
The following is the p.d.f. of r.v. X:
f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.
P(x > 2)
If the p.d.f. of c.r.v. X is f(x) = `x^2/18`, for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) = ______.
Choose the correct option from the given alternative:
If the a d.r.v. X has the following probability distribution :
x | -2 | -1 | 0 | 1 | 2 | 3 |
p(X=x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
then P (X = −1) =
The following is the c.d.f. of r.v. X
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
F(X) | 0.1 | 0.3 | 0.5 | 0.65 | 0.75 | 0.85 | 0.9 |
*1 |
P (–1 ≤ X ≤ 2)
The probability distribution of discrete r.v. X is as follows :
x = x | 1 | 2 | 3 | 4 | 5 | 6 |
P[x=x] | k | 2k | 3k | 4k | 5k | 6k |
(i) Determine the value of k.
(ii) Find P(X≤4), P(2<X< 4), P(X≥3).
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(x≤1)
Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f
f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate: P(0.5 ≤ x ≤ 1.5)
Given that X ~ B(n,p), if n = 25, E(X) = 10, find p and Var (X).
State whether the following is True or False :
If P(X = x) = `"k"[(4),(x)]` for x = 0, 1, 2, 3, 4 , then F(5) = `(1)/(4)` when F(x) is c.d.f.
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Determine the value of k.
Solve the following problem :
The probability distribution of a discrete r.v. X is as follows.
X | 1 | 2 | 3 | 4 | 5 | 6 |
(X = x) | k | 2k | 3k | 4k | 5k | 6k |
Find P(X ≤ 4), P(2 < X < 4), P(X ≤ 3).
If X denotes the number on the uppermost face of cubic die when it is tossed, then E(X) is ______
If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for" x = 1"," 2"," 3"," .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______
The probability distribution of X is as follows:
X | 0 | 1 | 2 | 3 | 4 |
P(X = x) | 0.1 | k | 2k | 2k | k |
Find k and P[X < 2]
The probability distribution of a discrete r.v. X is as follows:
x | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | k | 2k | 3k | 4k | 5k | 6k |
- Determine the value of k.
- Find P(X ≤ 4)
- P(2 < X < 4)
- P(X ≥ 3)
Given below is the probability distribution of a discrete random variable x.
X | 1 | 2 | 3 | 4 | 5 | 6 |
P(X = x) | K | 0 | 2K | 5K | K | 3K |
Find K and hence find P(2 ≤ x ≤ 3)