Advertisements
Advertisements
प्रश्न
Find the product of the matrices `[(1, 2, -3),(2, 3, 2),(3, -3, -4)][(-6, 17, 13),(14, 5, -8),(-15, 9, -1)]` and hence solve the system of linear equations:
x + 2x − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11
उत्तर
We have,
`AB = [(1, 2, -3),(2, 3, 2),(3, -3, -4)][(-6, 17, 13),(14, 5, -8),(-15, 9, -1)]`
= `[(-6 + 28 + 45, 17 + 10 - 27, 13 - 16 + 3),(-12+42-30, 34 + 15 + 18, 26 - 24 - 2),(-18 - 42 + 60, 51 - 15 - 36, 39 + 24 + 4)]`
= `[(67, 0, 0),(0, 67, 0),(0, 0, 67)]`
= 67`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Thus, AB = 67 I
⇒ `A(1/67B) = I`
⇒ A−1 = `1/67(B)`
Given system of linear equation is
x + 2y − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11
Represent it in matrix form as
`[(1, 2, -3),(2, 3, 2),(3, -3, -4)][(x),(y),(z)] = [(-4),(2),(11)]`
which is of the form AX = D
∴ X = A−1D
= `1/67(B).D`
= `1/67[(-6, 17, 13),(14, 5, -8),(-15, 9, -1)][(-4),(2),(11)]`
= `1/67[(201),(-134),(67)]`
= `[(3),(-2),(1)]`
∴ x = 3, y = −2 and z = 1