हिंदी

Find the projection of the vector i^+3j^+7k^ on the vector 7i^-j^+8k^. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the projection of the vector `hati + 3hatj + 7hatk`  on the vector `7hati - hatj + 8hatk`.

योग

उत्तर

Let `veca = hati + 3hatj + 7hatk` तथा `vecb = 7hati - hatj + 8hatk`

Example of `veca` on `vecb`

`= (veca xx vecb)/(|vecb|)`

`= ((hati + 3hatj + 7hatk)(7hati - hatj + 8hatk))/(|7hati - hatj + 8hatk|)`

`= (1.7 + 3(-1) + 7.8)/(sqrt(7^2 + (-1)^2 + 8^2))`

`= (7 - 3 + 56)/(sqrt(49 + 1 + 64))`

`= 60/sqrt114`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Vector Algebra - Exercise 10.3 [पृष्ठ ४४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 10 Vector Algebra
Exercise 10.3 | Q 4 | पृष्ठ ४४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the angle between two vectors `veca` and `vecb` with magnitudes `sqrt3` and 2, respectively having `veca.vecb = sqrt6`.


Find the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`.


Find the projection of the vector `hati - hatj` on the vector `hati + hatj`.


Show that `|veca|vecb+|vecb|veca`  is perpendicular to `|veca|vecb-|vecb|veca,` for any two nonzero vectors `veca and vecb`.


If the vertices A, B, C of a triangle ABC are (1, 2, 3), (–1, 0, 0), (0, 1, 2), respectively, then find ∠ABC. [∠ABC is the angle between the vectors `bar(BA)` and `bar(BC)`].


Show that the points A (1, 2, 7), B (2, 6, 3) and C (3, 10, –1) are collinear.


Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z.


If P, Q and R are three collinear points such that \[\overrightarrow{PQ} = \vec{a}\] and \[\overrightarrow{QR} = \vec{b}\].  Find the vector \[\overrightarrow{PR}\].


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a,} \vec{b,} 3 \vec{a} - 2 \vec{b}\]


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are non-coplanar vectors, prove that the points having the following position vectors are collinear: \[\vec{a} + \vec{b} + \vec{c} , 4 \vec{a} + 3 \vec{b} , 10 \vec{a} + 7 \vec{b} - 2 \vec{c}\]


Using vector method, prove that the following points are collinear:
A (6, −7, −1), B (2, −3, 1) and C (4, −5, 0)


Using vector method, prove that the following points are collinear:
A (2, −1, 3), B (4, 3, 1) and C (3, 1, 2)


Let `veca` , `vecb` and `vecc` be three vectors such that `|veca| = 1,|vecb| = 2, |vecc| = 3.` If the projection of `vecb` along `veca` is equal to the projection of `vecc` along `veca`; and `vecb` , `vecc` are perpendicular to each other, then find `|3veca - 2vecb + 2vecc|`.


The projection of vector `vec"a" = 2hat"i" - hat"j" + hat"k"` along `vec"b" = hat"i" + 2hat"j" + 2hat"k"` is ______.


What is the angle between two vectors `veca` and `vecb` with magnitudes `sqrt(3)` and 2 respectively, such that `veca * vecb = sqrt(6)`


If `veca` is a non zero vector of magnitude `a` and `lambda` `veca` non-zero scolor, then `lambda` is a unit vector of.


The scalar projection of the vector `3hati - hatj - 2hatk` on the vector `hati + 2hatj - 3hatk` is ______.


If `veca` and `vecb` are unit vectors and θ is the angle between them, then prove that `sin  θ/2 = 1/2 |veca  - vecb|`.


Write the projection of the vector `(vecb + vecc)` on the vector `veca`, where `veca = 2hati - 2hatj + hatk, vecb = hati + 2hatj - 2hatk` and `vecc = 2hati - hatj + 4hatk`.


Projection of vector `2hati + 3hatj` on the vector `3hati - 2hatj` is ______.


If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, show that the vector `vecc* vecd = 15` is equally inclined to `veca, vecb "and"  vecc.` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×