Advertisements
Advertisements
प्रश्न
Find the shortest distance between the lines L1 & L2 given below:
L1: The line passing through (2, −1, 1) and parallel to `x/1 = y/1 = z/3`
L2: `overset->r = hat i + (2mu + 1) hat j - (mu + 2) hat k`.
उत्तर
Given, L1: The line passing through (2, −1, 1) and parallel to `x/1 = y/1 = z/3`
L2: `overset->r = hat i + (2mu + 1) hat j - (mu + 2) hat k`
Write the given equations of line in standard form
L1: `overset-> r = (2hati - hat j + hat k) + lambda(hat i = hat j + 3hatk)` ...(i)
L2: `overset->r = (hat i + hat j - 2hatk) + mu(2hatj - hatk)` ...(ii)
On comparing Eqs. (i) and (ii) with `overset->r = a_1 + lambdab_1 and overset->r = a_2 + lambdab_2` respectively, we get
`overset->a_1 = 2hati - hat j + hat k, overset->b_1 = hat i + hat j + 3 hat k`
and `overset->a_2 = (hat i + hat j - 2hat k), overset->b_2 = 2hatj - hat k`
Clearly, `overset->b_1 xx overset->b_2 = |(hat i, hat j, hat k),(1, 1, 3),(0, 2, -1)|`
= `hat i(-1 -6) - hat j (-1-0) + hatk(2 - 0)`
= `-7hati + hat j + 2 hat k`
⇒ `|overset->b_1 xx overset->b_2| = |-7hat i + hat j + 2 hat k|`
= `sqrt((-7)^2 + (1)^2 + (2)^2)`
= `sqrt(49 + 1 + 4)`
= `sqrt54`
= `3sqrt6`
Now, `overset->a_2 - overset->a_1 = (hat i + hat j - 2hat k) - (2 hat i - hat j + hat k)`
= `- hat i + 2hat j - 3 hat k`
Required SD = `(|(overset->a_2 - overset->a_1)·(overset->b_1 xx overset->b_2)|)/|overset->b_1 xx overset->b_2|`
= `(|(-hat i + 2 hat j - 3 hat k)·(-7 hat i + hat j + 2 hat k)|)/(3 sqrt 6)`
= `|7 + 2 - 6|/(3 sqrt6)`
= `3/(3sqrt6)`
`1/sqrt6` unit