Advertisements
Advertisements
प्रश्न
Find the sum of G.P. :
`sqrt(3) + 1/sqrt(3) + 1/(3sqrt(3)) + ..........` to n terms.
उत्तर
Given G.P. : `sqrt(3) + 1/sqrt(3) + 1/(3sqrt(3)) + ..........` upto n terms
Here,
First term, a = `sqrt(3)`
Common ratio, r = `(1/sqrt(3))/sqrt(3) = 1/3` ...(∵ r < 1)
Number of terms to be added = n
∴ `S_n = (a(1 - r^n))/(1 - r)`
`=> S_n = (sqrt(3)(1 - (1/3)^n))/(1 - 1/3)`
= `(sqrt(3)(1 - 1/3^n))/(2/3)`
= `(3sqrt(3))/2(1 - 1/3^n)`
APPEARS IN
संबंधित प्रश्न
The fifth term of a G.P. is 81 and its second term is 24. Find the geometric progression.
The fourth term, the seventh term and the last term of a geometric progression are 10, 80 and 2560 respectively. Find its first term, common ratio and number of terms.
Find the seventh term from the end of the series :
`sqrt(2), 2, 2sqrt(2), ........., 32.`
For the G.P. `1/27, 1/9, 1/3, ........., 81`; find the product of fourth term from the beginning and the fourth term from the end.
Q 5
Q 1.2
Find the sum of G.P. :
0.3 + 0.03 + 0.003 + 0.0003 + ........... to 8 items.
Find the sum of G.P. :
`(x + y)/(x - y) + 1 + (x - y)/(x + y) + ..........` upto n terms.
Find the geometric mean between 14 and `7/32`
Find the 5th term of the G.P. `5/2, 1, .........`