हिंदी

Find the value of the expression 3[sin4(3π2-α)+sin4(3π+α)]-2[sin6(π2+α)+sin6(5π-α)] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the expression `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]`

योग

उत्तर

Let, y = `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]`

We know that,

`sin((3pi)/2  –  alpha)` = –cos α

sin(3π + α) = –sin α

`sin(pi/2 + alpha)` = cos α

sin(5π – α) = sin α

Therefore,

y = 3[(–cos α)4 + (–sin α)4] – 2[cosα + sin6 α]

⇒ y = 3 [cos4α + sin4α] – 2[sin6α + cos6α]

⇒ y = 3[(sin2α + cos2α)2 – 2sin2α cos2α] – 2[(sin2α)3 + (cos2α)3]

Since, we know that,

sin2α + cos2α = 1

Also, we know that,

a3 + b3 = (a + b)(a2 – ab + b2)

⇒ y = 3[1 – 2sin2α cos2α] – 2[(sin2α + cos2α)( cos4α + sin4α – sin2α cos2α)]

⇒ y = 3[1 – 2sin2α cos2α] – 2[cos4α + sin4α – sin2α cos2α]

⇒ y = 3[1 – 2sin2α cos2α] – 2[(sin2α + cos2α)2 – 2sin2α cos2α – sin2α cos2α]

⇒ y = 3[1 – 2sin2α cos2α] – 2[1 – 3sin2α cos2α]

⇒ y = 3 – 6sin2α cos2α – 2 + 6 sin2α cos2α

⇒ y = 1

shaalaa.com
Trigonometric Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 22 | पृष्ठ ५४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×