Advertisements
Advertisements
प्रश्न
Find the values of `a` and ` b` such that the function by:
`f(x) = {{:(5",", if x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`
is a continuous function.
विकल्प
0, 1
1, 1
2, 1
1, 2
MCQ
उत्तर
2, 1
Explanation:
At `x` = 2, L.H.L = `lim_(x -> 2^-) (5)` = 5
`f(2)` = 5
R.H.L = `lim_(x -> 2^+) (ax + b) = 2a + b`
`f` is continuous at `x = 2, 2a + b` = 5 ......(1)
At `x` = 10, L.H.L = `lim_(x -> 10^-) f(x) = lim_(x -> 10^-) (ax + b) = 10a + b`
R.H.L = `lim_(x -> 10^+) f(x) = lim_(x -> 10^+)`
`f` is continuous at `x` = 10 if 10`a + b` = 21 ......(2)
Subtracting (1) and (2),
`8a = 21 - 5 - 16`, ∴ `a` = 2
From (1), `2 xx 2 + b` = 5 ∴ `b` = 1
Hence `a` = 2, `b` = 1.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?