Advertisements
Advertisements
प्रश्न
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.
योग
उत्तर
f(x) = `x/(x^2 + 1)`
∴ f'(x) = `((x^2 + 1) - x(2x))/(x^2 + 1)^2`
= `(1 - x^2)/(x^2 + 1)^2`
f(x) is strictly decreasing in the interval for which f'(x) < 0
i.e. `(1 - x^2)/(x^2 + 1)^2 < 0`
i.e. 1 – x2 < 0
i.e. (1 – x)(1 + x) < 0
i.e. 1 – x < 0 and 1 + x > 0
or
1 – x > 0 and 1 + x < 0
i.e. 1 < x and x > –1, (i.e. x > 1)
Therefore f(x) is decreasing when
x ∈ (–∞, –1) ∪ (1, ∞)
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?