Advertisements
Advertisements
प्रश्न
Find the value of p for which the quadratic equation
\[\left( p + 1 \right) x^2 - 6(p + 1)x + 3(p + 9) = 0, p \neq - 1\] has equal roots. Hence, find the roots of the equation.
Disclaimer: There is a misprinting in the given question. In the question 'q' is printed instead of 9.
उत्तर
The given quadratic equation \[\left( p + 1 \right) x^2 - 6(p + 1)x + 3(p + 9) = 0\],
has equal roots.
Here,
\[a = p + 1, b = - 6p - 6 \text { and } c = 3p + 27\].
As we know that \[D = b^2 - 4ac\]
Putting the values of \[a = p + 1, b = - 6p - 6\text { and } c = 3p + 27\].
\[D = \left[ - 6(p + 1) \right]^2 - 4\left( p + 1 \right)\left[ 3\left( p + 9 \right) \right]\]
\[ = 36( p^2 + 2p + 1) - 12( p^2 + 10p + 9)\]
\[ = 36 p^2 - 12 p^2 + 72p - 120p + 36 - 108\]
\[ = 24 p^2 - 48p - 72\]
The given equation will have real and equal roots, if D = 0
Thus,
\[24 p^2 - 48p - 72 = 0\]
\[\Rightarrow p^2 - 2p - 3 = 0\]
\[ \Rightarrow p^2 - 3p + p - 3 = 0\]
\[ \Rightarrow p(p - 3) + 1(p - 3) = 0\]
\[ \Rightarrow (p + 1)(p - 3) = 0\]
\[ \Rightarrow p + 1 = 0 \text { or } p - 3 = 0\]
\[ \Rightarrow p = - 1 \text { or } p = 3\]
It is given that p ≠ −1, thus p = 3 only.
Now the equation becomes
\[4 x^2 - 24x + 36 = 0\]
\[ \Rightarrow x^2 - 6x + 9 = 0\]
\[ \Rightarrow x^2 - 3x - 3x + 9 = 0\]
\[ \Rightarrow x(x - 3) - 3(x - 3) = 0\]
\[ \Rightarrow (x - 3 )^2 = 0\]
\[ \Rightarrow x = 3, 3\]
Hence, the root of the equation is 3.
APPEARS IN
संबंधित प्रश्न
The product of two successive integral multiples of 5 is 300. Determine the multiples.
Solve the following quadratic equations by factorization: \[\frac{5 + x}{5 - x} - \frac{5 - x}{5 + x} = 3\frac{3}{4}; x \neq 5, - 5\]
If the equation 9x2 + 6kx + 4 = 0 has equal roots, then the roots are both equal to
Solve the following equation : `"ax"^2 + (4"a"^2 - 3"b")"x" - 12"ab" = 0`
Solve the following quadratic equation using formula method only
x2 - 7x - 5 = 0
The perimeter of the right angled triangle is 60cm. Its hypotenuse is 25cm. Find the area of the triangle.
Solve equation using factorisation method:
(2x – 3)2 = 49
Two pipes flowing together can fill a cistern in 6 minutes. If one pipe takes 5 minutes more than the other to fill the cistern, find the time in which each pipe would fill the cistern.
In each of the following determine whether the given values are solutions of the equation or not.
x2 + x + 1 = 0; x = 1, x = -1.
If the sum of the roots of the quadratic equation ky2 – 11y + (k – 23) = 0 is `13/21` more than the product of the roots, then find the value of k.