Advertisements
Advertisements
प्रश्न
Find the values of k for which the roots are real and equal in each of the following equation:
(4 - k)x2 + (2k + 4)x + 8k + 1 = 0
संक्षेप में उत्तर
उत्तर
The given quadric equation is (4 - k)x2 + (2k + 4)x + 8k + 1 = 0, and roots are real and equal
Then find the value of k.
Here,
a = 4 - k, b = (2k + 4) and c = 8k + 1
As we know that D = b2 - 4ac
Putting the value of a = 4 - k, b = (2k + 4) and c = 8k + 1
= (2k + 4)2 - 4 x (4 - k) x (8k + 1)
= (4k2 + 16k + 16) - 4(-8k2 + 31k + 4)
= 4k2 + 16k + 16 + 32k2 - 124k - 16
= 36k2 - 108k + 0
The given equation will have real and equal roots, if D = 0
36k2 - 108k + 0 = 0
36(k2 - 3k) = 0
k2 - 3k = 0
Now factorizing of the above equation
k(k - 3) = 0
So, either
k = 0
Or
k - 3 = 0
k = 3
Therefore, the value of k = 0, 3.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?