Advertisements
Advertisements
प्रश्न
Find the vector equation of the plane which contains the line of intersection of the planes `vecr (hati+2hatj+3hatk)-4=0` and `vec r (2hati+hatj-hatk)+5=0` which is perpendicular to the plane.`vecr(5hati+3hatj-6hatk)+8=0`
उत्तर
The equations of the given planes are
`vecr (hati+2hatj+3hatk)-4=0 ........(1)`
`vec r (2hati+hatj-hatk)+5=0 .........(2)`
The equation of the plane passing through the intersection of the planes (1) and (2) is
`[vecr (hati+2hatj+3hatk)-4]+lambda[ vec r (2hati+hatj-hatk)+5]=0`
`vecr[(1+2lambda)hati+(2+lambda)hatj+(3-lambda)hatk]=4-5lambda.............(3)`
Given, the plane (3) is perpendicular to the plane `vecr(5 hati+3hatj-6hatk)+8=0`
`(1+2lambda)xx5+(2+lambda)xx3+(3-lambda)xx(-6)=0`
`19lambda-7=0`
`lambda=7/19`
Putting `lambda=7/19 ` in (3), we get
`vec r[(1+14/19)hati+(2+7/19)hatj+(3-7/19)hatk]=4-35/19`
`vecr(33/19hati+45/19hatj+50/19hatk)=41/19`
`vecr(33hati+45hatj+50hatk)=41`
Thus, the equation of the required plane is
`vecr(33hati+45hatj+50hatk).=41`
APPEARS IN
संबंधित प्रश्न
Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hati + hatj + 2hatk.`
Parametric form of the equation of the plane is `bar r=(2hati+hatk)+lambdahati+mu(hat i+2hatj+hatk)` λ and μ are parameters. Find normal to the plane and hence equation of the plane in normal form. Write its Cartesian form.
Write the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane `vec r.(hati+hatj+hatk)=2`
Find the vector equation of the plane passing through three points with position vectors ` hati+hatj-2hatk , 2hati-hatj+hatk and hati+2hatj+hatk` . Also find the coordinates of the point of intersection of this plane and the line `vecr=3hati-hatj-hatk lambda +(2hati-2hatj+hatk)`
Find the equation of the plane which contains the line of intersection of the planes
`vecr.(hati-2hatj+3hatk)-4=0" and"`
`vecr.(-2hati+hatj+hatk)+5=0`
and whose intercept on x-axis is equal to that of on y-axis.
Find the Cartesian equation of the following planes:
`vecr.(2hati + 3hatj-4hatk) = 1`
Find the Cartesian equation of the following planes:
`vecr.[(s-2t)hati + (3 - t)hatj + (2s + t)hatk] = 15`
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
2x + 3y + 4z – 12 = 0
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
3y + 4z – 6 = 0
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
5y + 8 = 0
Find the vector and Cartesian equation of the planes that passes through the point (1, 4, 6) and the normal vector to the plane is `hati -2hatj + hatk`
Find the cartesian form of the equation of the plane `bar r=(hati+hatj)+s(hati-hatj+2hatk)+t(hati+2hatj+hatj)`
Find the image of a point having the position vector: `3hati - 2hatj + hat k` in the plane `vec r.(3hati - hat j + 4hatk) = 2`
Find the vector and Cartesian forms of the equation of the plane passing through the point (1, 2, −4) and parallel to the lines \[\vec{r} = \left( \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right)\] and \[\vec{r} = \left( \hat{i} - 3 \hat{j} + 5 \hat{k} \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\] Also, find the distance of the point (9, −8, −10) from the plane thus obtained.
Find the equation of the plane passing through the intersection of the planes `vec(r) .(hat(i) + hat(j) + hat(k)) = 1"and" vec(r) . (2 hat(i) + 3hat(j) - hat(k)) +4 = 0 `and parallel to x-axis. Hence, find the distance of the plane from x-axis.
Vector equation of a line which passes through a point (3, 4, 5) and parallels to the vector `2hati + 2hatj - 3hatk`.
Find the vector and Cartesian equations of the plane passing through the points (2, 2 –1), (3, 4, 2) and (7, 0, 6). Also find the vector equation of a plane passing through (4, 3, 1) and parallel to the plane obtained above.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.
The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is ______.
The Cartesian equation of the plane `vec"r" * (hat"i" + hat"j" - hat"k")` = 2 is ______.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vec"r" = 5hat"i" - 4hat"j" + 6hat"k" + lambda(3hat"i" + 7hat"j" + 2hat"k")`.
Find the vector and the cartesian equations of the plane containing the point `hati + 2hatj - hatk` and parallel to the lines `vecr = (hati + 2hatj + 2hatk) + s(2hati - 3hatj + 2hatk)` and `vecr = (3hati + hatj - 2hatk) + t(hati - 3hatj + hatk)`