Advertisements
Advertisements
प्रश्न
Find whether the first polynomial is a factor of the second.
2a − 3, 10a2 − 9a − 5
उत्तर
\[\frac{{10a}^2 -9a-5}{2a-3}\]
\[ = \frac{5a(2a-3)+3(2a-3)+4}{2a-3}\]
\[ = \frac{(2a-3)(5a+3)+4}{2a-3}\]
\[ =(5a+3)+ \frac{4}{2a-3}\]
\[ \because \text{Remainder = 4}\]
\[ \therefore \text{( 2a-3) is not a factor of}\ {10a}^2 -9a-5.\]
APPEARS IN
संबंधित प्रश्न
Write each of the following polynomials in the standard form. Also, write their degree.
Divide 15m2n3 by 5m2n2.
Divide −21abc2 by 7abc.
Divide −72a4b5c8 by −9a2b2c3.
Divide 5x3 − 15x2 + 25x by 5x.
Divide −21 + 71x − 31x2 − 24x3 by 3 − 8x.
Divide 3y4 − 3y3 − 4y2 − 4y by y2 − 2y.
Divide 6x3 + 11x2 − 39x − 65 by 3x2 + 13x + 13 and find the quotient and remainder.
Using division of polynomials, state whether
4x − 1 is a factor of 4x2 − 13x − 12
Find whether the first polynomial is a factor of the second.
y − 2, 3y3 + 5y2 + 5y + 2