Advertisements
Advertisements
प्रश्न
Fit a trend line to the following data by the method of least square :
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |
सारिणी
योग
उत्तर
Let the equation of trend line be y = a + bx .....(i)
Here n = 7(odd), middle year is 1995 and h = 5
x = `("t" - "middle year")/"h"`
= `("t" - 1995)/5`
We obtain the following table:
Year | IMR (y) | x | x2 | x.y |
1980 | 10 | – 3 | 9 | – 30 |
1985 | 7 | – 2 | 4 | – 14 |
1990 | 5 | – 1 | 1 | – 5 |
1995 | 4 | 0 | 0 | 0 |
2000 | 3 | 1 | 1 | 3 |
2005 | 1 | 2 | 4 | 2 |
2010 | 0 | 3 | 9 | 0 |
Total | 30 | 0 | 28 | – 44 |
From the table, n = 7, Σyt = 30, Σx = 0, Σx2 = 28, Σxyt = – 44
The normal equations are
Σy = na + bΣx
∴ 30 = 7a + bΣx
As, Σx = 0, a = `30/7` = 4.2857
Also, Σxy = aΣx + bΣx2
∴ – 44 = aΣx + b′(28)
As, Σx = 0, b =`(-44)/28` = – 1.5714
∴ The equation of trend line is y = a + bx
∴ The equation of trend line is y = 4.2857 – 1.5714x
shaalaa.com
Measurement of Secular Trend
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?