हिंदी

Following table shows the all India infant mortality rates (per '000) for years 1980 to 2010: Year 1980 1985 1990 1995 2000 2005 2010 IMR 10 7 5 4 3 1 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Following table shows the all India infant mortality rates (per '000) for years 1980 to 2010:

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Fit the trend line to the above data by the method of least squares.

योग

उत्तर

Let Yt = a + bu be the trend equation where a and b are constants obtained by solving the normal equations.

Here n = 7 and interval h = 5,

middle year = 1995.

u = `("t" - "middle year")/"interval "`

u = `("t" - 1995)/5`

We obtain the following table:

Year (t) IMR (y) u = `bb((("t" - 1995)/5))` u2 u.y yt
1980 10 – 3 9 – 30 8.9999
1985 7 – 2 4 – 14 7.4285
1990 5 – 1 1 – 5 5.8571
1995 4 0 0 0 4.2857
2000 3 1 1 3 2.7143
2005 1 2 4 2 1.1429
2010 0 3 9 0 – 0.4285
Total 30 0 28 – 44  

From the table, n = 7, Σy = 30, Σu = 0,

Σu2 = 28 and Σuy = – 44

The two normal equations are

Σy = na + bΣu

and Σuy = aΣu + Σu2

Substituting the values, we will get

∴ 30 = 7a and – 44 = 28b

a = `30/7` and b = `(– 44)/28`

a = 4.2857 and b = –1.5714

∴ Equation of the trend line yt = a + bu is

yt = 4.2857 + (–1.5714)u

yt = 4.2857 – 1.5714u    ... (i)

Substituting u = –3, –2, –1, 0, 1, 2, 3 in equation (i), we will get the trend values of y 1 and tabulate in the last column.

When u = –3,

yt = 4.2857 – 1.5741 x (–3)

= 4.2857 + 4.7142

= 8.9999

When u = –2,

yt = 4.2857 – 1.5741 x (–2)

= 7.4285

When u = –1,

yt = 4.2857 – 1.5741 x (–1)

= 5.8571

When u = 0,

yt = 4.2857 – 1.5741 x (0)

= 4.2857

When u = 1, yt = 2.7143

When u = 2, yt = 1.1429

When u = 3, yt = – 0.4285

Tabulate the trend values yt in the last column.

shaalaa.com
The Method of Least Squares
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (March) Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×