हिंदी

For any arbitrary motion in space, state whether the following statement is true: v (t) = v (0) + a t (The ‘average’ stands for average of the quantity over the time interval t1 to t2) - Physics

Advertisements
Advertisements

प्रश्न

For any arbitrary motion in space, state whether the following statement is true:

v (t) = v (0) + a t

(The ‘average’ stands for average of the quantity over the time interval t1 to t2)

विकल्प

  • True 

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

The equation cannot represent the particle's motion in space since its acceleration may be non-uniform and its motion arbitrary.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Motion in a Plane - Exercises [पृष्ठ ८७]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
अध्याय 4 Motion in a Plane
Exercises | Q 4.23 (c) | पृष्ठ ८७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A cyclist starts from the centre O of a circular park of radius 1 km, reaches the edge P of the park, then cycles along the circumference, and returns to the centre along QO as shown in figure. If the round trip takes 10 min, what is the (a) net displacement, (b) average velocity, and (c) average speed of the cyclist?


For any arbitrary motion in space, state whether the following statement is true:

`"a"_"average"=["v"("t"_2) - "v"("t"_1)]/("t"_2 - "t"_1)`

(The ‘average’ stands for average of the quantity over the time interval t1 to t2)


For any arbitrary motion in space, state whether the following statement is true:

`"V"_"average"` = [r(t2) - r(t1) ] /(t2 – t1)


For any arbitrary motion in space, state whether the following statement is true:

`"r"("t") = "r"(0) + "v"(0)"t"  + 1/2  "a"  "t"^2 `

(The ‘average’ stands for average of the quantity over the time interval t1 to t2)


In a two dimensional motion, instantaneous speed v0 is a positive constant. Then, which of the following are necessarily true?


Motion in two dimensions, in a plane can be studied by expressing position, velocity and acceleration as vectors in cartesian co-ordinates A = `A_xhati + A_yhatj` where `hati` and `hatj` are unit vector along x and y directions, respectively and Ax and Ay are corresponding components of (Figure). Motion can also be studied by expressing vectors in circular polar co-ordinates as A = `A_rhatr + A_θhatθ` where `hatr = r/r = cos θhati + sin θj` and `hatθ = - sin  θhati + cos θ hatj` are unit vectors along direction in which `r` and `θ` are increasing.

  1. Express `hati` and `hatj` in terms of `hatr` and `hatθ`
  2. Show that both `hatr` and `hatθ` are unit vectors and are perpendicular to each other.
  3. Show that `d/(dt) (hatr) = ωhatθ` where `θ = (dθ)/(dt)` and `d/(dt) (hatθ) = - ωhatr`
  4. For a particle moving along a spiral given by `t = aθhatr`, where a = 1 (unit), find dimensions of ‘a’.
  5. Find velocity and acceleration in polar vector representation for particle moving along spiral described in (d) above.

Two vectors `vec"A"` and `vec"B"` have equal magnitudes. If magnitude of `vec"A"` + `vec"B"` is equal to two times the magnitude of `vec"A"` - `vec"B"`, then the angle between  `vec"A"` and `vec"B"` will be :


Boat travels upstream in a river and at t = 0 a wooden cork is thrown over the side with zero initial velocity. After 7.5 minutes the boat turns and starts moving downstream catches the cork when it has drifted 1 km downstream. Then the velocity of water current is ______.


A displacement vector, at an angle of 30° with y-axis has an x-component of 10 units. Then the magnitude of the vector is ______.


The displacement s of a particle depends on time t according to the following relation `s = 1/3t^3 - t^2 + t`. The velocity and displacement of the particle at the instant when its acceleration is zero, are respectively ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×