Advertisements
Advertisements
प्रश्न
For every natural number m, (2m – 1, 2m2 – 2m, 2m2 – 2m + 1) is a pythagorean triplet.
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
∵ (2m – 1)2 ≠ (2m2 – 2m)2 + (2m2 – 2m + 1)2
(2m2 – 2m)2 ≠ (2m – 1)2 + (2m2 – 2m + 1)2
And (2m2 – 2m + 1)2 ≠ (2m – 1)2 + (2m2 – 2m)2
APPEARS IN
संबंधित प्रश्न
Find the square of the given number.
35
Observe the following pattern
22 − 12 = 2 + 1
32 − 22 = 3 + 2
42 − 32 = 4 + 3
52 − 42 = 5 + 4
and find the value of
1112 − 1092
Which of the following triplet pythagorean?
(16, 63, 65)
Observe the following pattern
\[\left( 1 \times 2 \right) + \left( 2 \times 3 \right) = \frac{2 \times 3 \times 4}{3}\]
\[\left( 1 \times 2 \right) + \left( 2 \times 3 \right) + \left( 3 \times 4 \right) = \frac{3 \times 4 \times 5}{3}\]
\[\left( 1 \times 2 \right) + \left( 2 \times 3 \right) + \left( 3 \times 4 \right) + \left( 4 \times 5 \right) = \frac{4 \times 5 \times 6}{3}\]
and find the value of(1 × 2) + (2 × 3) + (3 × 4) + (4 × 5) + (5 × 6)
Observe the following pattern \[1 = \frac{1}{2}\left\{ 1 \times \left( 1 + 1 \right) \right\}\]
\[ 1 + 2 = \frac{1}{2}\left\{ 2 \times \left( 2 + 1 \right) \right\}\]
\[ 1 + 2 + 3 = \frac{1}{2}\left\{ 3 \times \left( 3 + 1 \right) \right\}\]
\[1 + 2 + 3 + 4 = \frac{1}{2}\left\{ 4 \times \left( 4 + 1 \right) \right\}\]and find the values of following:
31 + 32 + ... + 50
Find the squares of the following numbers using diagonal method:
295
Find a Pythagorean triplet in which one member is 12.
There are ______ natural numbers between n2 and (n + 1)2
Can a right triangle with sides 6 cm, 10 cm and 8 cm be formed? Give reason.
The dimensions of a rectangular field are 80 m and 18 m. Find the length of its diagonal.