हिंदी

For f(x)= ℓn|x+x2+1|, then the value ofg(x)=(cosx)(cosecx-1) and h(x)=ex-e-xex+e-x, then the value of ππππ|f(0)f(e)g(π6)f(-e)h(0)h(π)g(5π6)h(-π)f(f(f(0)))| is ______. -

Advertisements
Advertisements

प्रश्न

For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is ______.

विकल्प

  • 0.00

  • 1.00

  • 2.00

  • 3.00

MCQ
रिक्त स्थान भरें

उत्तर

For f(x)= `ℓn|x + sqrt(x^2 + 1)|`, then the value of`g(x) = (cosx)^((cosecx - 1))` and `h(x) = (e^x - e^-x)/(e^x + e^-x)`, then the value of `|(f(0), f(e), g(π/6)),(f(-e), h(0), h(π)),(g((5π)/6), h(-π), f(f(f(0))))|` is 0.00.

Explanation:

∵ `f(0) = 0, f(-e) = -f(e), g((5π)/6) = -g(π/6)`

`h(-π) = -h(π), h(0)` = 0

∴ Determinant value is zero.

shaalaa.com
Determinants
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×