हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

For the cost function C = 2000 + 1800x - 75x2 + x3 find when the total cost (C) is increasing and when it is decreasing. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For the cost function C = 2000 + 1800x - 75x2 + x3 find when the total cost (C) is increasing and when it is decreasing.

योग

उत्तर

Given = 2000 + 1800x - 75x2 + x

Differentiating with respect to 'x' we get,

`"dC"/"dx" = 1800 - 150x + 3x^2`

`"dC"/"dx"` = 0

⇒ 1800 - 150x + 3x2 = 0

⇒ 3(x2 - 50x + 600) = 0

⇒ x2 - 50x + 600 = 0  ...(Divided by 3)

⇒ (x - 30)(x - 20) = 0 ....`{(600 = -30 xx -20),(- 50 = -30 -20):},`

⇒ x = 30, 20

The possible intervals are (0, 20) (20, 30) and (30, ∞)

Intervals Sign of `"dC"/"dx"` Nature of Function
(0, 20)
say x = 10
1800 - 150(10) + 3(10)2
= 600 (Positive)
Increasing
(20, 30)
say x = 25
1800 - 150(25) + 3(25)2
= - 75 (Negative)
Decreasing
(30, ∞)
say x = 40
1800 - 150(40) + 3(40)2
= 600 (Positive)
Increasing

Hence, total cost is increasing in (0, 20) and (30, ∞) and decreasing in (20, 30).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Applications of Differentiation - Miscellaneous Problems [पृष्ठ १५६]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 6 Applications of Differentiation
Miscellaneous Problems | Q 6 | पृष्ठ १५६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×