Advertisements
Advertisements
प्रश्न
For the following inequations, graph the solution set on the real number line:
x – 1 < 3 – x ≤ 5
उत्तर
x – 1 < 3 – x ≤ 5
x – 1 < 3 – x and 3 – x ≤ 5
2x < 4 and – x ≤ 2
x < 2 and x ≥ – 2
The solution set on the real number line is
APPEARS IN
संबंधित प्रश्न
Solve the following inequation, write the solution set and represent it on the number line.
`-3(x - 7) >= 15 - 7x > (x+1)/3`, x ∉ R
Solve the following in equation and represent the solution set on the number line.
`R - 3 < -1/2 - (2x)/3 <= 5/6, x ∈ R`
Represent the following inequalities on real number line:
3x + 1 ≥ – 5
Given: A = {x : –8 < 5x + 2 ≤ 17, x ∈ I}, B = {x : –2 ≤ 7 + 3x < 17, x ∈ R}
Where R = {real numbers} and I = {integers}. Represent A and B on two different number lines. Write down the elements of A ∩ B.
Solve the following in equation and write the solution set:
13x – 5 < 15x + 4 < 7x + 12, x ∈ R
Solve the following linear in-equation and graph the solution set on a real number line:
`5/4 "x" > 1 + 1/3 (4"x" - 1)` , x ∈ R
Graph the solution set for each inequality:
-3< x ≤ 8
Given:
P = {x : 5 < 2x - 1 ≤ 11, x ∈ R}
Q = {x : -1 ≤ 3 + 4x < 23, x ∈ R}
Where R = (real number), I = (Integers) Reperesnr P and Q on number lines. Write down the elements of P ∩ Q.
Solve the following inequalities and represent the solution set on a number line:
-4 ≤ 2x - 3 ≤ 5
Solve the following inequation and represent the solution set on the number line : `4x - 19 < (3x)/(5) - 2 ≤ -(2)/(5) + x, x ∈ "R"`