Advertisements
Advertisements
प्रश्न
For the G.P., if a = `7/243, "r" = 1/3`, find t3.
उत्तर
Given, a = `7/243, "r" = 1/3`
tn = arn–1
∴ t3 = `7/243 xx (1/3)^(3 - 1)`
= `7/243 xx (1/3)^2`
= `7/243 xx 1/9`
= `7/2187`.
APPEARS IN
संबंधित प्रश्न
Verify whether the following sequence is G.P. If so, write tn:
2, 6, 18, 54, ...
Verify whether the following sequence is G.P. If so, write tn:
7, 14, 21, 28, ...
For the G.P., if r = `1/3`, a = 9, find t7.
For the G.P., if a = 7, r = – 3, find t6.
For the G.P., if a = `2/3`, t6 = 162, find r.
If p, q, r, s are in G. P., show that p + q, q + r, r + s are also in G. P.
Insert two numbers between 1 and – 27 so that the resulting sequence is a G.P.
For a G.P. a = `4/3 and "t"_7 = 243/1024`, find the value of r.
For a sequence, if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Verify whether the following sequences are G.P.If so, find tn.
`sqrt(5),1/sqrt(5),1/(5sqrt(5)),1/(25sqrt(5))`
If for a sequence, `t_n = (5^(n-3))/(2^(n-3))`, show that the sequence is a G.P. Find its first term and the common ratio.
If for a sequence, `t_n = 5^(n-3)/2^(n-3)`, show that the sequence is a G.P.
Find its first term and the common ratio.
Verify whether the following sequences are G.P. If so, find tn.
`sqrt5, 1/sqrt5, 1/(5sqrt5), 1/(25sqrt5), ...`
For the G.P. if a = `2/3`, t6 = 162 , find r.
Verify whether the following sequence is G.P. If so, find tn:
`sqrt5, 1/sqrt5, 1/(5 sqrt5), 1/(25 sqrt5), ...`
Verify whether the following sequence is G.P. If so, find tn.
`sqrt5,1/sqrt5,1/(5sqrt5),1/(25sqrt5),...`
For the G.P., if a = `2/3 , t_6 ` = 162 , find r
For the G.P. if a = `2/3 , t_6 = 162 ` , find r
Verify whether the following sequence is G.P. If to find tn:
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
If for a sequence, `t_n = (5^(n - 3))/(2^(n - 3))`, show that the sequence is a G.P.
Find its first term and the common ratio.