Advertisements
Advertisements
प्रश्न
For the harmonic travelling wave y = 2 cos 2π (10t – 0.0080x + 3.5) where x and y are in cm and t is second. What is the phase difference between the oscillatory motion at two points separated by a distance of What is the phase difference between the oscillation of a particle located at x = 100 cm, at t = T s and t = 5 s?
उत्तर
Given, wave functions are y = 2 cos 2π (10t – 0.0080x + 3.5)
= 2 cos(20πt – 0.016πx + 7π)
Now, the standard equation of a travelling wave can be written as y = a cos(ωt – kx + `phi`)
On comparing with the above equation, we get
a = 2 cm
ω = 20π rad/s
k = 0.016π
Path difference = 4 cm
T = `(2π)/ω = (2π)/(20π) = 1/10`s
∴ At x = 100 cm, t = T
`phi`1 = 20πT – 0.016π(100) + 7π
= `20π(1/10) - 16π + 7π`
= 2π – 1.6π + 7π .......(i)
Again, at x = 100 cm, t = 5s
`phi`2 = 20π(5) – 0.016π(100) + 7π
= `100π - (0.016 xx 100)π + 7π`
= 100π – 1.6π + 7π .......(ii)
∴ From equations (i) and (ii), we get
Δ`phi` = Phase difference = `phi_1 - phi_2`
= (100π – 1.6π + 7π) – (2π – 1.6π + 7π)
= 100π – 2π
= 98π rad
APPEARS IN
संबंधित प्रश्न
Consider two waves passing through the same string. Principle of superposition for displacement says that the net displacement of a particle on the string is sum of the displacements produced by the two waves individually. Suppose we state similar principles for the net velocity of the particle and the net kinetic energy of the particle. Such a principle will be valid for
A tuning fork of frequency 480 Hz is used to vibrate a sonometer wire having natural frequency 240 Hz. The wire will vibrate with a frequency of
A 4⋅0 kg block is suspended from the ceiling of an elevator through a string having a linear mass density of \[19 \cdot 2 \times {10}^{- 3} kg m^{- 1}\] . Find the speed (with respect to the string) with which a wave pulse can proceed on the string if the elevator accelerates up at the rate of 2⋅0 m s−2. Take g = 10 m s−2.
A heavy ball is suspended from the ceiling of a motor car through a light string. A transverse pulse travels at a speed of 60 cm s −1 on the string when the car is at rest and 62 cm s−1 when the car accelerates on a horizontal road. Find the acceleration of the car. Take g = 10 m s−2
Two waves, each having a frequency of 100 Hz and a wavelength of 2⋅0 cm, are travelling in the same direction on a string. What is the phase difference between the waves (a) if the second wave was produced 0⋅015 s later than the first one at the same place, (b) if the two waves were produced at the same instant but first one was produced a distance 4⋅0 cm behind the second one? (c) If each of the waves has an amplitude of 2⋅0 mm, what would be the amplitudes of the resultant waves in part (a) and (b) ?
Three identical charges are placed on three vertices of a square. If the force acting between q1 and q2 is F12 and between q1 and q3 is f13 then `"F"_13/"F"_12` = ____________.
The displacement of an elastic wave is given by the function y = 3 sin ωt + 4 cos ωt. where y is in cm and t is in second. Calculate the resultant amplitude.
For the harmonic travelling wave y = 2 cos 2π (10t – 0.0080x + 3.5) where x and y are in cm and t is second. What is the phase difference between the oscillatory motion at two points separated by a distance of 4 m.
For the harmonic travelling wave y = 2 cos 2π (10t – 0.0080x + 3.5) where x and y are in cm and t is second. What is the phase difference between the oscillatory motion at two points separated by a distance of `λ/2`
For the harmonic travelling wave y = 2 cos 2π (10t – 0.0080x + 3.5) where x and y are in cm and t is second. What is the phase difference between the oscillatory motion at two points separated by a distance of `(3λ)/4` (at a given instant of time)