हिंदी

For x > 0, limx→0((sinx)1/x+(1x)sinx) is ______. -

Advertisements
Advertisements

प्रश्न

For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.

विकल्प

  • 0

  • 1

  • –1

  • 2

MCQ
रिक्त स्थान भरें

उत्तर

For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is 1.

Explanation:

Here, `lim_(x rightarrow 0) (sin x)^(1//x) + lim_(x rightarrow 0) (1/x)^sinx`

= `0  + lim_(x rightarrow 0) e^(log(1/x)^sinx)`  ...`[(∵ lim_(x rightarrow 0) (sin x)^(1//x)  rightarrow 0),("as"  0 < sin x < 1)]`

= `e^(lim_(x rightarrow 0)) (log(1/x))/("cosec"  x)`  ...[by L’ Hopsital rule]

= `e^(lim_(x rightarrow 0)) (x((-1)/2))/(-"cosec"  x cot x)`  

= `e^(lim_(x rightarrow 0)) sinx/x tan x`

= e0

= 1

shaalaa.com
Continuous and Discontinuous Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×