हिंदी

Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______ -

Advertisements
Advertisements

प्रश्न

Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______

विकल्प

  • P(-1) is the minimum and P(1) is the maximum of P

  • P(-1) is not minimum but P(1) is the maximum of P

  • P(-1) is the minimum but P(1) is not the maximum of P

  • Neither P(-1) is the maximum nor P(1) is the maximum of P 

MCQ
रिक्त स्थान भरें

उत्तर

P(-1) is not minimum but P(1) is the maximum of P

Explanation:

P(x) = x4 + ax3 + bx2 + cx + d

⇒ P'(x) = `4x^3 + 3ax^2 + 2bx + c` .............(i)

Since, x = 0 is the only real root of P'(x) = 0.

∴ P'(0) = 0 ⇒ c = 0

Putting c = 0 in (i), we get

P'(x) = x(4x2 + 3ax + 2b)

Since x = 0 is the only real root of P'(x) = 0,

4x2 + 3ax + 2b = 0 has no real root. 

⇒ `9a^2 - 32b < 0`

Given, P(-1) < P(1)

⇒ 1 - a + b - c + d < 1 + a + b + c + d

⇒ a > 0

But, `9a^2 - 32b < 0`.

∴ b > 0

∴ P'(x) = x(4x2 + 3ax + 2b) > 0 for all x ∈ [0, 1]

⇒ P(x) is increasing in [0, 1]

⇒ P(1) is the maximum value of P(x).

Also, P'(x) = x(4x2 + 3ax + 2b) < for all

x ∈ [-1, 0] ..........................[∵ 4x2 + 3ax + 2b > 0 for all x]

⇒ P(x) is decreasing in [-1, 0].

⇒ P(-1) is not the minimum value of P.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×