Advertisements
Advertisements
प्रश्न
Given the demand function q = 150 − 3p, derive a function for MR.
उत्तर
Given:
q = 150 – 3p
\[\frac { dq }{ dq } = 0 – 3 (1)\]
\[\frac { dq }{ dq } = – 3\]
Revenue = price × quantity = p (150 – 3p)
= p (150 – 3p)
= 150p – 3p2
MR = \[\frac { dq }{ dq } = 150\]
\[\frac { dq }{ dq } -6p \frac { dq }{ dq }\]
= 150 \[(\frac { – 1 }{ 3 }) – 6p (\frac { – 1 }{ 3 })\]
= – 50 + 2p
= – 50 = 2 \[(\frac { 150 – q }{ 3 })\]
= 50 + 100 + \[\frac { – 2 q }{ 3 }\]
= 50 – \[\frac { 2 q }{ 3 }\]
= 50 – \[\frac { 2 }{ 3 }\] (150 – 3p)
MR = 2p – 50
APPEARS IN
संबंधित प्रश्न
If x+y = 5 and x-y= 3 then, Value of x
Integration is the reverse process of
Data processing is done by
If 62 = 34 + 4x what is x?
Find the average cost function where TC = 60 + 10x +15x2
Suppose the price p and quantity q of a commodity are related by the equation q = 30 - 4p - p2 find
- ed at p = 2
- MR
Solve for x quantity demanded if 16x − 4 = 68 + 7x.