Advertisements
Advertisements
प्रश्न
Hundred students appeared for two examinations. 60 passed the first, 50 passed the second, and 30 passed in both. Find the probability that student selected at random passed in exactly one examination.
उत्तर
Out of a hundred students, 1 student can be selected in 100C1 = 100 ways.
∴ n(S) = 100
Let A be the event that student passed in the first examination.
Let B be the event that student passed in the second examination.
∴ n(A) = 60, n(B) = 50 and n(A ∩ B) = 30
∴ P(A) = `("n"("A"))/("n"("S")) = 60/100 = 6/10`
∴ P(B) = `("n"("B"))/("n"("S")) = 50/100 = 5/10`
∴ P(A ∩ B) = `("n"("A" ∩ "B"))/("n"("S")) = 30/100 = 3/10`
P(student passed in exactly one examination)
= P(A) +P(B) − 2.P(A ∩ B)
= `6/10 - 5/10 + 2(3/10)`
= `5/10`
= `1/2`
APPEARS IN
संबंधित प्रश्न
A card is drawn from a pack of 52 cards. What is the probability that, card is either red or black?
A card is drawn from a pack of 52 cards. What is the probability that card is either red or face card?
Two cards are drawn from a pack of 52 cards. What is the probability that, both the cards are of same colour?
A bag contains 50 tickets, numbered from 1 to 50. One ticket is drawn at random. What is the probability that, number on the ticket is a perfect square or divisible by 4?
A bag contains 50 tickets, numbered from 1 to 50. One ticket is drawn at random. What is the probability that, number on the ticket is a prime number or greater than 30?
Hundred students appeared for two examinations. 60 passed the first, 50 passed the second, and 30 passed in both. Find the probability that student selected at random failed in both the examinations.
If P(A) = `1/4`, P(B) = `2/5` and P(A ∪ B) = `1/2` Find the value of the following probability: P(A ∩ B')
If P(A) = `1/4`, P(B) = `2/5` and P(A ∪ B) = `1/2` Find the value of the following probability: P(A' ∪ B')
If P(A) = `1/4`, P(B) = `2/5` and P(A ∪ B) = `1/2` Find the value of the following probability: P(A' ∩ B')
A card is drawn from a well shuffled pack of 52 cards. Find the probability of it being a heart or a queen.
Three groups of children contain respectively 3 girls and 1 boy, 2 girls and 2 boys and 1 girl and 3 boys. One child is selected at random from each group. What is the chance that three selected consists of 1 girl and 2 boys?
Two-third of the students in a class are boys and rest are girls. It is known that the probability of girl getting first class is 0.25 and that of boy getting is 0.28. Find the probability that a student chosen at random will get first class.
Two cards are drawn from a pack of 52 cards. What is the probability that, both the cards are either black or queens?
Let A and B be independent events such that P(A) = p, P(B) = 2p. The largest value of p, for which P(exactly one of A, B occurs) = `5/9`, is ______.