Advertisements
Advertisements
प्रश्न
If `A=[[1,-1,2],[3,0,-2],[1,0,3]]` verify that A (adj A) = |A| I.
उत्तर
`A=[[1,-1,2],[3,0,-2],[1,0,3]]`
`|A|=|[1,-1,2],[3,0,-2],[1,0,3]|`
`=1(0)+1(9+2)+2(0)`
`=0+11+0`
`therefore |A|=11`
`A_11=(-1)^(1+1)M_11=1|[0,-2],[0,3]|=1(0-0)=1xx0=0`
`A_12=(-1)^(1+2)M_12=-1|[3,-2],[1,3]|=-1(9+2)=-11`
`A_13=(-1)^(1+3)M_13=1|[3,0],[1,0]|=1(0-0)=1xx0=0`
`A_21=(-1)^(2+1)M_21=-1|[-1,2],[0,3]|=-1(-3-0)=1xx0=3`
`A_22=(-1)^(2+2)M_22=1|[1,2],[1,3]|=1(3-2)=1`
`A_23=(-1)^(2+3)M_23=-1|[1,-1],[1,0]|=-1(0+1)=-1`
`A_31=(-1)^(3+1)M_31=1|[-1,2],[0,-2]|=1(2-0)=1xx2=2`
`A_32=(-1)^(3+2)M_32=-1|[1,2],[3,-2]|=-1(-2-6)=8`
`A_33=(-1)^(3+3)M_33=1|[1,-1],[3,0]|=1(0+3)=1xx3=3`
Hence, matrix of the co-factors is
`[[A_11,A_12,A_13],[A_21,A_22,A_23],[A_31,A_32,A_33]]=[[0,-11,0],[3,1,-1],[2,8,3]]=[A_(ij)]_(3xx3)`
`Now , adjA=[A_(ij)]_(3xx3)^T=[[0,3,2],[-11,1,8],[0,-1,3]]`
`A(adjA)=[[1,-1,2],[3,0,-2],[1,0,3]][[0,3,2],[-11,1,8],[0,-1,3]]`
`=[[0+11+0,3-1-2,2-8+6],[0+0+0,9+0+2,6+0-6],[0+0+0,3+0-3,2+0+9]]`
`=[[11,0,0],[0,11,0],[0,0,11]]`......................(1)
`|A|.I=11[[1,0,0],[0,1,0],[0,0,1]]`
`=[[11,0,0],[0,11,0],[0,0,11]]`......................(2)
From equations (1) and (2), we get A(adj A) = |A|. I
APPEARS IN
संबंधित प्रश्न
If `A^-1=1/3[[1,4,-2],[-2,-5,4],[1,-2,1]]` and | A | = 3, then (adj. A) = _______
If `A=[[2,-2],[4,3]]` then find `A^-1` by adjoint method.
`A=[[1,2],[3,4]]` ans A(Adj A)=KI, then the value of 'K' is
If `A =[[2,-3],[3,5]]` then find A-1 by adjoint method.
If A = `[(2,-3),(4,1)]`, then adjoint of matrix A is
(A) `[(1,3),(-4,2)]`
(B) `[(1,-3),(-4,2)]`
(C) `[(1,3),(4,-2)]`
(D) `[(-1,-3),(-4,2)]`