Advertisements
Advertisements
प्रश्न
If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.
विकल्प
0
λ
λ + 1
`λ/((λ + 1))`
उत्तर
0
Explanation:
Let z1 = x1 + iy1, z2 = x2 + iy2 and z3 = x3 + iy3
Given, z1 = `(λz_2 + z_3)/(λ + 1)`
`\implies` x1 + iy1 = `(λ(x_2 + iy_2) + (x_3 + iy_3))/(λ + 1)`
`\implies` x1 + iy1 = `(λx_2 + λiy_2 + x_3 + iy_3)/(λ + 1)`
`\implies` x1 + iy1 = `(λx_2 + x_3)/(λ + 1) + (i(λy_2 + y_3))/(λ + 1)`
∴ x1 = `(λx_2 + x_3)/(λ + 1)` and y1 = `(λ(y_2 + y_3))/(λ + 1)`
Hence, z1 (point A) divides z2 (point B) and z3 (point C) in the ratio λ : 1.
∴ B, A, and C are collinear.
So, the distance of point A from the line joining points B and C is zero.