हिंदी

If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = λλλz2+z3λ+1, where λ ∈ R, then find the distance of point A from the line joining points B -

Advertisements
Advertisements

प्रश्न

If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.

विकल्प

  • 0

  • λ

  • λ + 1

  • `λ/((λ + 1))`

MCQ
रिक्त स्थान भरें

उत्तर

0

Explanation:

Let z1 = x1 + iy1, z2 = x2 + iy2 and z3 = x3 + iy3

Given, z1 = `(λz_2 + z_3)/(λ + 1)`

`\implies` x1 + iy1 = `(λ(x_2 + iy_2) + (x_3 + iy_3))/(λ + 1)`

`\implies` x1 + iy1 = `(λx_2 + λiy_2 + x_3 + iy_3)/(λ + 1)`

`\implies` x1 + iy1 = `(λx_2 + x_3)/(λ + 1) + (i(λy_2 + y_3))/(λ + 1)`

∴ x1 = `(λx_2 + x_3)/(λ + 1)` and y1 = `(λ(y_2 + y_3))/(λ + 1)`

Hence, z1 (point A) divides z2 (point B) and z3 (point C) in the ratio λ : 1.

∴ B, A, and C are collinear.

So, the distance of point A from the line joining points B and C is zero.

shaalaa.com
Argand Diagram Or Complex Plane
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×