Advertisements
Advertisements
प्रश्न
If `veca, vecb, vecc` are three vectors such that `veca.vecb = veca.vecc` and `veca xx vecb = veca xx vecc, veca ≠ 0`, then show that `vecb = vecc`.
उत्तर
Given, `veca.vecb = veca.vecc`
⇒ `veca.vecb - veca.vecc` = 0
⇒ `veca.(vecb - vecc)` = 0
⇒ Either `vecb = vecc` or `veca ⊥ (vecb - vecc)`
Also, given `veca xx vecb - veca xx vecc`
⇒ `veca xx vecb - veca xx vecc` = 0
⇒ `veca xx (vecb - vecc)` = 0
⇒ Either `veca || (vecb - vecc)` or `vecb = vecc`
But vector `veca` a cannot be both parallel and perpendicular to vector `(vecb - vecc)`.
Hence, vector `vecb = vecc`.
APPEARS IN
संबंधित प्रश्न
Find the unit vector in the direction of the vector `veca = hati + hatj + 2hatk`.
Find the unit vector in the direction of vector `vec(PQ)`, where P and Q are the points (1, 2, 3) and (4, 5, 6), respectively.
If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + vec"b" + vec"a" = vec0` and `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, then value of `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"` is ______.
If `|vec"a"| = |vec"b"|`, then necessarily it implies `vec"a" = +- vec"b"`.
If `|veca`| = 3, `|vecb|` = 5, `|vecc|` = 4 and `veca + vecb + vecc` = `vec0`, then find the value of `(veca.vecb + vecb.vecc + vecc.veca)`.