Advertisements
Advertisements
प्रश्न
If a, b, c and d are in proportion prove that `(13a + 17b)/(13c + 17d) = sqrt((2ma^2 - 3nb^2)/(2mc^2 - 3nd^2)`
उत्तर
a, b, c and d are in proportion
`a/b = c/d = k(say)`
Then a = bk and c = dk
`L.H.S = (13a + 17b)/(13c + 17d) = (13(bk) + 17b)/(13(dk) + 17d) = (b(13k + 17))/(d(13k + 17)) = b/d`
R.H.S = `sqrt((2ma^2 - 3nb^2)/(2mc^2 - 3nd^2)) = sqrt((2m(bk)^2 - 3nb^2)/(2m(dk)^2 - 3nd^2)) = sqrt((b^2(2mk^2 - 3n))/(d^2(2mk^2 - 3n))) = b/d`
Hence L.H.S = R.H.S
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?