हिंदी

If A: B with a ≠ B is the Duplicate Ratio of a + C: B + C, Show that C2 = Ab. - Mathematics

Advertisements
Advertisements

प्रश्न

If a: b with a ≠ b is the duplicate ratio of a + c: b + c, show that c2 = ab.

योग

उत्तर

The duplicate ratio of
`a/b = ((a + c)^2)/((b + c)^2)`
⇒ `a/b = (a^2 + c^2 + 2ac)/(b^2 + c^2 + 2bc)`
⇒ ab2 + ac2 + 2abc = a2b + bc2 + 2abc
⇒ ac2 - bc2 = a2b - ab2
⇒ c2(a - b) = ab(a - b)
Hence, c2 = ab.
Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Ratio and Proportion - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
अध्याय 8 Ratio and Proportion
Exercise 2 | Q 2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×