हिंदी

If a random variable X follows the Binomial distribution B (33, p) such that 3P(X = 0) = P(X = 1), then the value of P(X=15)P(X=18)-P(X=16)P(X=17) is equal to ______. -

Advertisements
Advertisements

प्रश्न

If a random variable X follows the Binomial distribution B (33, p) such that 3P(X = 0) = P(X = 1), then the value of `(P(X = 15))/(P(X = 18)) - (P(X = 16))/(P(X = 17))` is equal to ______.

विकल्प

  • 1320

  • 1088

  • `120/1331`

  • `1088/1089`

MCQ
रिक्त स्थान भरें

उत्तर

If a random variable X follows the Binomial distribution B (33, p) such that 3P(X = 0) = P(X = 1), then the value of `(P(X = 15))/(P(X = 18)) - (P(X = 16))/(P(X = 17))` is equal to 1320.

Explanation:

Let the probability of success is p and q = 1 – p.

Here, n = 33

3P(x = 0) = P(x = 1)

3. 33C0 (q)33 = 33C1 pq32

p = `1/12`, q = `11/12`, `q/p` = 11  ...(i)

`(P(X = 15))/(P(X = 18)) - (P(X = 16))/(P(X = 17))`

`(""^33C_15  p^15  q^18)/(""^33C_18  p^18  q^15) - (""^33C_16  p^16  q^17)/(""^33C_17  p^17  q^16) = (q/p)^3 - (q/p)`

= (11)3 – 11  ...[From (i)]

= 1320

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×