Advertisements
Advertisements
प्रश्न
If a solid shape has 12 faces and 20 vertices, then the number of edges in this solid is ______.
उत्तर
If a solid shape has 12 faces and 20 vertices, then the number of edges in this solid is 30.
Explanation:
We know that, Euler's formula for any polyhedron is F + V – E = 2
Given, faces, F = 12, vertices, V = 20
Now, on putting the value of F and V in the Euler's formula, we get 12 + 20 – E = 2
⇒ 32 – E = 2
⇒ 32 – 2 = E
⇒ E = 30
Hence, the number of edges = 30
APPEARS IN
संबंधित प्रश्न
Using Euler's formula, find the values of x, y, z.
Faces | Vertices | Edges | |
(i) | x | 15 | 20 |
(ii) | 6 | y | 8 |
(iii) | 14 | 26 | z |
A polyhedron can have 10 faces, 20 edges and 15 vertices.
Look at the shapes given below and state which of these are polyhedra using Euler’s formula.
Look at the shapes given below and state which of these are polyhedra using Euler’s formula.
Look at the shapes given below and state which of these are polyhedra using Euler’s formula.
Look at the shapes given below and state which of these are polyhedra using Euler’s formula.
Look at the shapes given below and state which of these are polyhedra using Euler’s formula.
Using Euler’s formula, find the value of unknown y in the following table.
Faces | y |
Vertices | 12 |
Edges | 18 |
Using Euler’s formula, find the value of unknown z in the following table.
Faces | 9 |
Vertices | z |
Edges | 16 |
A solid has forty faces and sixty edges. Find the number of vertices of the solid.