Advertisements
Advertisements
प्रश्न
If µ and σ2 are the mean and variance of the discrete random variable X and E(X + 3) = 10 and E(X + 3)2 = 116, find µ and σ2
उत्तर
Given E(X + 3) = 10
E(aX + b) = aE(X) + b
E(X + 3) = 10
⇒ E(X) + 3 = 10
⇒ µ = E(X) = 7
E(X + 3)2 = 116
E(X2 + 6X + 9) = 116
E(X2) + 6E(X) + 9 = 116
E(X2) + 6(7) + 9 = 116
E(X2) = 65
σ² = Var (X)
= E(X2) – [E(X)]2
= 65 – 49
= 16
APPEARS IN
संबंधित प्रश्न
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(1/10, x = 2"," 5),(1/5, x = 0"," 1"," 3"," 4):}`
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:((4 - x)/6, x = 1"," 2"," 3),(0, "otherwise"):}`
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(2(x - 1), 1 < x ≤ 2),(0, "otherwise"):}`
Choose the correct alternative:
A random variable X has binomial distribution with n = 25 and p = 0.8 then standard deviation of X is
Choose the correct alternative:
Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on that bus. Then E(X) and E(Y) respectively are
Choose the correct alternative:
On a multiple-choice exam with 3 possible destructive for each of the 5 questions, the probability that a student will get 4 or more correct answers just by guessing is
The following table is describing about the probability mass function of the random variable X
x | 3 | 4 | 5 |
P(x) | 0.2 | 0.3 | 0.5 |
Find the standard deviation of x.
Let X be a continuous random variable with probability density function
f(x) = `{{:(3/x^4",", x ≥ 1),(0",", "otherwise"):}`
Find the mean and variance of X
What do you understand by Mathematical expectation?
How do you defi ne variance in terms of Mathematical expectation?
State the definition of Mathematical expectation using continuous random variable
In a business venture a man can make a profit of ₹ 2,000 with a probability of 0.4 or have a loss of ₹ 1,000 with a probability of 0.6. What is his expected, variance and standard deviation of profit?
A person tosses a coin and is to receive ₹ 4 for a head and is to pay ₹ 2 for a tail. Find the expectation and variance of his gains
Choose the correct alternative:
Probability which explains x is equal to or less than a particular value is classified as
Choose the correct alternative:
Which of the following is not possible in probability distribution?
Choose the correct alternative:
E[X – E(X)] is equal to
Choose the correct alternative:
A discrete probability function p(x) is always non-negative and always lies between
Prove that if E(X) = 0, then V(X) = E(X2)