हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

If α, β and γ are the roots of the cubic equation x3 + 2x2 + 3x + 4 = 0, form a cubic equation whose roots are γ1α,1β,1γ - Mathematics

Advertisements
Advertisements

प्रश्न

If α, β and γ are the roots of the cubic equation x3 + 2x2 + 3x + 4 = 0, form a cubic equation whose roots are `1/alpha, 1/beta, 1/γ`

योग

उत्तर

The new roots are `1/alpha, 1/beta, 1/γ`

`sum1 = 1/alpha + 1/beta + 1/γ`

= `(betaγ + alphaγ + alphabeta)/(alpha beta γ)`

= `(- 3)/4`

`sum2 = 1/(alphabeta) + 1/(betaγ) + 1/(γalpha)`

= `(alpha + beta + γ)/(alpha beta γ)`

= `(- 2)/(- 4)`

= `1/2`

`sum3 = 1/(alpha γ)`

= `- 1/4`

Required equation is

`x^3 - (- 3/4)x^2 + 1/2x - (- 1/4)` = 0

`x^3 + 3/4 x^2 + x/2 + 1/4` = 0

⇒ 4x3 + 3x2 + 2x + 1 = 0

shaalaa.com
Vieta’s Formulae and Formation of Polynomial Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Theory of Equations - Exercise 3.1 [पृष्ठ १०६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 3 Theory of Equations
Exercise 3.1 | Q 3. (ii) | पृष्ठ १०६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×