Advertisements
Advertisements
प्रश्न
If α and β are the roots of the equation 2x2 – 3x – 6 = 0. The equation whose roots are `1/α` and `1/β` is:
विकल्प
6x2 – 3x + 2 = 0
6x2 + 3x – 2 = 0
6x2 – 3x – 2 = 0
x2 + 3x – 2 = 0
MCQ
उत्तर
6x2 + 3x – 2 = 0
Explanation:
Here a = 2, b = –3, c = –6
α + β = `(-"b")/"a" = 3/2` and αβ = `"c"/"a" = (-6)/2` = –3
∴ s = `1/α + 1/β = (β + α)/(αβ) = (3/2)/(-3) = (-1)/2`
p = `1/α xx 1/β = 1/(αβ) = 1/-3`
The equation is x2 – s(x) + p = 0
⇒ `"x"^2 - ((-1)/2) "x" + (1/(-3))`
∴ 6x2 + 3x – 2 = 0
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?