Advertisements
Advertisements
प्रश्न
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
विकल्प
`-1/2`
`1/2`
32
`1/4`
MCQ
रिक्त स्थान भरें
उत्तर
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to `underlinebb(1/4)`.
Explanation:
Given equation is x2 + 2x + 4 = 0
Since α, β are roots of this equation
∴ α + β = –2 and αβ = 4
Now, `1/a^3 + 1/β^3 = (α^3 + β^3)/(αβ)^3`
= `((α + β)(α^2 + β^2 - αβ))/(αβ)^3`
= `((-2)((α + β)^2 - 3αβ))/(4 xx 4 xx 4)`
= `(-2(4 - 12))/(4 xx 4 xx 4)`
= `1/4`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?