हिंदी

If α and β be the roots of the equation x2 – 2x + 2 = 0, then the least value of n for which αβ(αβ)n = 1 is ______. -

Advertisements
Advertisements

प्रश्न

If α and β be the roots of the equation x2 – 2x + 2 = 0, then the least value of n for which `(α/β)^n` = 1 is ______.

विकल्प

  • 4

  • 2

  • 5

  • 3

MCQ
रिक्त स्थान भरें

उत्तर

If α and β be the roots of the equation x2 – 2x + 2 = 0, then the least value of n for which `(α/β)^n` = 1 is 4.

Explanation:

x2 – 2x + 2 = 0

x = `(2 +- sqrt(4 - 8))/2`

x = `1 +- i`

Let α = 1 + i, β = 1 – i

`(α/β)^n` = 1

⇒ `((1 + i)/(1 - i))^n` = 1`

⇒ `{(1 + i)^2/((1 + i)(1 - i))}^n` = 1  ...(By rationalization)

⇒ in = 1

Least x is 4.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×